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Motivation | — What is a proof?

crAPTER 1 ()

THE GELFOND-SCHNEIDER THEOREM

1. Hilbert’s seventh problem. In 1900 and H.\l—
bert d a list of twenty-th
sotved prablems. The seventh problem was settled by the
publication of the following result in 1934 by A. O. Gel-
fond, which was followed by an independent proof by
Th. Schneider in 1935.

TaeoreM 10.1. If « and B are algebraic numbers with
a#0, a1, and if § is not a real rational number, then
any value of o 1s transcendendal.

Remarks. The hypothesis that “8 is not a real ra-
tional number” is usually stated in the form “g is irra-
tional.” Our wording is an attempt to avoid the sugges-
tion that g must be a real number. Such a number as
8 = 2 + 3i, sometimes called a “complex rational num-
ber,”” satisfies the hypotheses of the theorem. Thus the
theorem establishes the transcendence of such numbers as
2° and 2V2. In general, o = exp {8log e} is multiple-
valued, and this is the reason for the phrase “any value
of” in the statement of Theorem 10.1. One value of
72 = exp {—2ilog i} is €7, and so this is transcendental
according to the theorem.

Before proceeding to the proof of Theorem 10.1, we
state an alternative form of the result.

134

Font: Irrational numbers, lvan Niven.
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136 THE GELFOND-SCHNEIDER THEOREM Ch. 10

Schneider theorem, and they will be given with proofs in
the next section.

Lemma 10.3. Consider a delerminant with the non-zero
element pf in the j-th row and 1 + a-th column, with j = 1, 2,

o tanda=0,1, -+, t — 1. This is called a Vander-
monde determinant, and it vanishes if and only if p; = py
Sor some distinct pair of subscripts j, k.

This can be found in J. V. Uspensky, Theory of Equa-
tions, McGraw-Hull, p, 214. The next four lemmas are in
Harry Pollard, The Theory of Algebraic Numbers, John
Wiley, p. 53, p. 60. pp. 63-66, p. 72.

Lemma 10.4. Let « and B be algebraic numbers in a
field K of degree h over the rationals. If the conjugales of
o for K are a = ay, ag, *-+, a and for B are = fy, By,

**y By, then the conjugates of of and o + B are cufy, -+,
bpand ay + By, -+, an+ Bh

Lesma 10.5. If a 48 an algebraic number, then there is
a positive rational integer T such that ra is an algebraic in-
teger.

Lmvoa 106, If K s an algebraic number field of degree
h over the rationals, then there exist integers By, Ba, *++, Ba
methwmteqarmwauu’bk unigquely as
a Unear combination gif; + - -+ gaBy with rational inte-
gral coefficients. The numbers g; are called an iniegral basis
for K, and the discriminant of such a basis is a non-zero

rational integer.
Lmanaa 10.7. Ifananalpdmncnumbzrm a field K of
dagres h over the rationals, then the norm ), defined as

the product of « and its conjugales, umﬁutheubtm
N(ag) = N(a)-N(8). AlsoN(a) = 0if and only if @ = 0.
If o i an algebraic inieger, MN(u)uamtwmllmloger
If ais rational, then N(a) =

Font: Irrational numbers, lvan Niven.
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Sec. 3 TWO LEMMAS 137

Finally, from complex variable theory we need the con-
cept of entire function, i.e., a function that is analytic in
the whole complex plane, and Cauchy’s residue theorem.
These ideas can be found, for example, in K. Knopp’s
Theory of Functions, vol. I, Dover, p. 112ff. and p. 130.

3. Two lemmas. Lemma 10.8. Consider the m equa-
tions in n unknowns
(10.1)
a2y + GraZe + - o+ AGnZn = 0, k=12 -
with rational integral coefficients ai;, and with 0 < m < n.
Let the positive integer A be an upper bound of the absolute
values of all coefficients; thus A 2 |ag| for all i and j.
Then there is a non-trivial solution Ty, Tz, -, 2n i 1
integers of equations (10.1) such that

5l <14+ @A™, je1,2,n

Proof. Write yx for axs1 + - - - + araZn S0 that to each
point z = (g1, 2z, -+ -, T) there corresponds & point y =
(W1, Y2, *++, Ym). A point such as z is said to be a lattice
point if its coordinates z; are rational integers. If z is &
lattice point, then the corresponding point y is also a lat-~
tice point because the a;; are rational integers. Let ¢ be
any positive integer. Let z range over the (2g + 1)" lat~
tice points inside or on the n-dimensional cube defined by
|2;] < g for all j. Then the
values of yy satisfy

) My

luel =

- " s
Y| S Dlayl -z s X Ag = ndg.
J=1 d=1 =1

Thus, as = ranges over the (2¢ + 1)* lattice points as
indicated, the corresponding lattice points y have co-
ordinates y, which are integers among the 2ndgq + 1

Font: Irrational numbers, Ivan Niven.
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Bec. 3 TWO LEMMAS 139

Leama 10.9.  Consider the p equations in g wunknowns
(10.4)
apdy + argbs + 0o+ aighy = 0, k=12 -p
with coefficients a,; which are integers in an algebraic num~
ber field K of finite degree. Assume that 0 < p <gq. Let
A 2 1 be an upper bound for the absolute values of ihe co-
efficients and their conjugates for K, thus A 2 || s || for all
iandj. Then there exists a positive conslant ¢ depending on
the field K but independent of ;. p, and g, such that lhe
equations (10.4) have a non-irivial solution £, &5, -+, &q
in integers of the field K satisfying

&1l < ¢+ elegdy?’ @, =152

Proof. Let h be the degree of K over the field of ra-
tional numbers, and let By, By, - - -, B be an integral basis
for the field. If  is any integer of K, then by Lemma 10 8
We can express « uniquely as a linear combination of the
integral basis,

@ = giB1 + gaBz + -+ D,

with rational integral coefficients a,. Denote the conju-
gates of a for K by @ = a®, a®, -+, o™, and similarly
for the ;. Taking conjugatws in the La.ac equation, by
Lemma 10.4 we getl,
a® = 0 g 4okl Pm12h
The determi |8 is the discriminant of the basis,
and it is not zero by Lemma 10.6. Hence we can solve
these equations for the g; as linear combinalions of the
&, with coefficients dependent only on the basis. Tak-
ing absolute values throughout these solutions, we can
write

105) g5l <erllall, i=1,2 b

Font: Irrational numbers, lvan Niven.
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Sec. 4 PROOF OF GELFOND-SCHNEIDER THEOREM 149

2
[§1 < flogal~ .g. o2

< {2cs]log a| H}Ppr@—mI2
= P2,

With this estimate for [¢|, and that of Lemma 10.12 for
its conjugates, we write, by (10.10),

INQ)| < BpPE™2ep?)* = (e )Pp? = Bp ™2,
where ¢y = ¢oc*~!. This and Lemma 10.11 imply that
gp™? > C7?, Ceo > p,

for some positive constants independent of n and p. But
this is & contradiction, because p Z n, and we can choose
n arbitrarily large.

Notes on Chapter 10

The special case of Theorem 10.1 for any imaginary quadratic
irrational # was established by A. O. Gelfond, Gompt. Rend. Acad.
Sei. Paris, 189 (1929), 124-12%6. The original papers establish-

ing Theorem 10.1 are: A. O. Gelfond, Doklady Akad. Nauk S.S.5.R.,
2 (1984), 1-4; Th. Scbnelder, J. rene angew. Moth, 173 (1585), 85-

Mat. Nouk (N.S.), 4, no. 4 (32), 1049 (1949). There is an exposi-
tion of Gelfond’s proof by E. Hille, Amer. Math. Monthly, 49 (1942),
654-661.

‘The proof of Theorem 10.1 given here is based on a simplification
of Gel!ond’s proof by C. L. Siegel, Transcendental Numbers, Princo-
ton, p

Kithough the mettods of Chapters 9 and 10 establish the trans-
cendence of wide classes of numbers, there are many unsolved prob-

Font: Irrational numbers, Ivan Niven.
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» What (really) are ecumenical systems?

» What are they good for?

» Why should anyone be interested in ecumenical systems?

» What is the real motivation behind the definition and development of
ecumenical systems?

Prawitz: what makes a connective classical or intuitionistic?
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Philosophical motivation

Logical inferentialism:

» the meaning of the logical constants can be specified by the rules that
determine their correct use;

» proof-theoretical requirements on admissible logical rules: harmony and
separability;

» pure logical systems: negation is not used in premises.
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Logical motivation (dialogue by Luiz Carlos)

» IL: if what you mean by (AV B) is =(—A A =B), then | can accept the
validity of (AV —A)!
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case that it is not true!
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Logical motivation (dialogue by Luiz Carlos)

» IL: if what you mean by (AV B) is =(—A A =B), then | can accept the
validity of (AV —A)!

» CL: but | do not mean —(—A A =—A) by (AV —A). One must distinguish
the excluded-middle from the the principle of non-contradiction. When |
say that Goldbach's conjecture is either true or false, | am not saying that
it would be contradictory to assert that it is not true and that it is not the
case that it is not true!

» |L: but you must realize that, at the end of the day, you just have one
logical operator!!! (can you guess one?)

> E.g.:
Quinne dagger Sheffer stroke
A| B | AlB A| B | AtB
1 1 0 1 1 0
110 0 1]0 1
0|1 0 0|1 1
0|0 1 0|0 1
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Logical motivation (dialogue by Luiz Carlos)

» IL: if what you mean by (AV B) is =(—A A =B), then | can accept the
validity of (AV —A)!

» CL: but | do not mean —(—A A =—A) by (AV —A). One must distinguish
the excluded-middle from the the principle of non-contradiction. When |
say that Goldbach's conjecture is either true or false, | am not saying that
it would be contradictory to assert that it is not true and that it is not the
case that it is not true!

» |L: but you must realize that, at the end of the day, you just have one
logical operator!!! (can you guess one?)

» CL: But this is not at all true! The fact that we can define one operator in
terms of other operators does not imply that we don't have different
operators!

It is true that we can prove - (A V. B) < —=(=A A =B) in the ecumenical
system, but this does not mean that we don't have three different
operators: =, V¢ and A.
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Mathematical motivation (example by Emerson Sales)

if x+y=2ztheni x>zorcy > z.

@O

A4
classical mathematician ®
intuitionistic mathematician © ©
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» Mathematicians often prefer a direct proof over a proof by contradiction.
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You don't need to go classical every time ©

» Mathematicians often prefer a direct proof over a proof by contradiction.

» Prove p — g directly: assume p, make some intermediary conclusions r,
r» then deduce g. Thus, our proof not only establishes that p implies g,
but also, that p implies 1 and r» etc. So we come to a fuller
understanding of what is going on in the p worlds.

» Prove the contrapositive =q — —p directly: assume —q, make intermediary
conclusions ri, r» then conclude —p. Thus, we have also established not
only that —q implies —p, but also, that it implies r1 and r» etc. Thus, the
proof tells us about what else must be true in worlds where g fails.

» Prove p A =g — L: argue r1, r, and so on, before arriving at a
contradiction. The statements r1 and r» are all deduced under the
contradictory hypothesis, which ultimately does not hold in any
mathematical situation. The proof has provided extra knowledge about a
nonexistent, contradictory land.

Source: Joel David Hamkins in mathoverflow.
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effective bounds, whereas proofs by (especially when
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do not easily yield such bounds.
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You don't need to go classical every time ©

» Mathematicians prefer a direct proof over a proof by contradiction.

» In analysis, proofs by contraposition tend to be finitary in nature and yield
effective bounds, whereas proofs by (especially when
combined with compactness arguments) tend to be infinitary in nature and
do not easily yield such bounds.

» Computational problem of trying to find a path in a maze from A to B.

» Direct approach: start from A and explore all reasonable-looking directions
from A until one reaches B.

» Contrapositive: start backwards from B and try to reach A; then at the end
one simply reverses the path.

» Contradiction = meet-in-the-middle strategy: explore both forwards from A
and backwards from B until one gets an intersection. This is a faster
strategy, with a run time which is typically the square root of the run time
of the other two approaches.

Source: Terry Tao in mathoverflow.
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In this talk

What makes logical connectives (including modalities) classical or intuitionistic?

Ecumenical types! (with Delia Kesner, Mariana Milicich and Louis Riboulet)

(Maybe) Modalities (with Sonia Marin, Luiz Carlos Pereira and Emerson Sales)
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Outline

Ecumenism
Ecumenical natural deduction

Towards purity

Ecumenical terms
Modalities

The challenge of constructive modal logic
Ecumenical modal logic
Purity!

Concluding
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What is behind Ecumenism?

For a classical logician Av —A holds. For an intuitionistic logician it does not.

But why (and where) do they disagree?

—— init ?
;Kf;ﬁR %%%ﬁR
. VR,

FAv-A YR AV -A
Prawitz: They are not talking about the same connective(s) (Prawitz 2015)

“The classical logician is not asserting what the intuitionistic logician
denies: The classical logician asserts

AV, -A
to which the intuitionist does not object; He objects to the universal

validity of
AVi-A,

which is not asserted by the classical logician.”
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Ecumenical natural deduction
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Prawitz' idea

» Why not having a deduction system where classical and intuitionistic logic
could coexist in peace?
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Prawitz' idea

» Why not having a deduction system where classical and intuitionistic logic
could coexist in peace?

» The classical logician and the intuitionistic logician would share the
universal quantifier, conjunction, negation and the constant for the absurd,
but they would each have their own existential quantifier, disjunction and
implication, with different meanings.

» Prawitz’' main idea is that these different meanings are given by a
semantical framework that can be accepted by both parties.

» The surprising aspect of Prawitz’ system is its ability to share negations
between the classical and the intuitionistic system, since many consider
negation subject to the controversy between classical and intuitionistic
logic, as implication is.
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Ecumenical connectives and rules — NE
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Ecumenical connectives and rules — NE

[Av_‘B]
I
—c !

1
A—.B

[_'A7 _'B]
M
L
AVv:B

Vel

[VX.ﬁA]
n

1
d.x.A 3l

Classical

[A]

Shared

A(t)
3,’X.A

il

Intuitionistic

(Prawitz 2015)
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Provability. . .

Provable in NE:
1. Fne (A —c L) =i (A — L) = (“A);
FNE (A Ve ) ﬁ(ﬁA/\ﬁB);
I—NE (A —>c B) & (A A —\B);
NE (Fex.A) & = (Vx.-A).
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Provability. . .

Provable in NE:
1. Fne (A —c L) = (A — L) = (—‘A);
FNE (A Ve ) ﬁ(ﬁA/\ﬁB);
|_NE (A —c B) & (A A —\B);
NE (Fex.A) & = (Vx.-A).

:‘>.‘*’!\’

However:

5. bne (A =i B) = (A —¢ B) but t/ne (A —c B) —i (A = B) in general;
Fne A Ve —A but e A Vi —A in general;
Fne (4—A) —c A but e (——A) —; A in general;
Fne (AA (A= B)) =i B but t/ne (AA (A —¢ B)) — B in general;
Fne VXx.A —i =3cx.—A but F/ne =Fcx.—A —i Vx.A in general.

© o ~No
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... and proofs

Theorem
I Ais provable in NE iff kng AT — A.

» The Ecumenical entailment is intuitionistic!

» That is, even though some formulas carry with them the notion of classical
truth, the logical consequence is intrinsically intuitionistic.

» As it should be, since the ecumenical system embeds the classical behavior
into intuitionistic logic.

» But if A is classical, the entailment can be read classically.

» And this justifies the ecumenical view of entailments in Prawitz's original
proposal.
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Peirce's law

Prove ((A — B) — A) — A in classical logic.
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Peirce's law

Prove ((A — B) — A) — A in classical logic.

¥ & %O @ F File Display Templates Semantics Backward Forward Query Debug Help

Require Import ProofWeb. 4
Variables A B : Prop.
Theorem lec2_ex03 : ((A -> B) -> A) —> A.
Proof.

imp_i H1.

PBC H2.

neg_e (A).

exact H2.

imp_e (A -> B).

exact HI.

imp_i H3.

fls_e.

neg_e (A).

exact H2.

exact H3.

Qed.

12 [

n
Le
B
—— ~ilH3]
[(A-B) -A" A-B
- e
B2 A
e
n
PBC[H2]
A
~i[H1]

((A+B) ~A) A
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Peirce's law

Prove ((A —;i B) =i A) —c A in NE.

Rules:
[A]
n
A—i B A B
B i B
A —A
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Peirce's law

Prove ((A —;i B) =i A) —c A in NE.
Answer:

LA AP

E
2 B — |
A, B [(A =i B) —; A" E
A o [-A]!
1 ~E
1 —c !

((A—iB)—=iA) = A
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Peirce's law

Prove ((A —;i B) =i A) —c A in NE.
Answer:

LA AP

E
2 B — |
A, B [(A =i B) —; A" E
A o [-A]!
1 L e

((A—iB)—=iA) = A

Note the occurrence of negation!!
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Peirce's law

Prove ((A —i B) =i A) —c Ain NE.
Answer:

LA AR

E
L F
2 B — 1
A= B [(A—i B) = A" E
A A
1 ~E
1 —c !

((A—iB)—=iA) = A

Note the occurrence of negation!! What is negation doing there??

S,

18/47
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Towards purity
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Negation messing up again...

NE is not pure: the definition of classical connectives depend on other
connectives.
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1
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Negation messing up again...

NE is not pure: the definition of classical connectives depend on other
connectives.

For example:
[Vx.=A]
n

1
d.x.A 3l

One way of purifying systems: polarities.

Another way: stoup

A Y
where X has at most one formula.
For example:
A, Icx.A; A(t) -
A;3cx.A ¢

Finally, for Prawitz: p. = ——p; — and this is unfortunate!
20 /47



Ecumenical rules with stoup — NEg

[A] T
n
A B;-
A A—c B

AAB;-
A AV B

A, Jcx.A; At)

A;Jcx.A

Classical

—c !

Vel

[A T
0
A; -

A; -A

A A Ao

ALDGAAB D

A A(y)
A;Vx.A

Shared

=l

B

Vi

/

[A] T
n
A; B

AA B !

A; Aj

J
A; A Vi A \/il

A;A()

A;Jix.A 3il

Intuitionistic

(Pereira & Pimentel 2022)
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Ecumenical rules with stoup — NEg

[LA] T [-A] T [ A T
AB;. $ :
LA A, _AB
A;A—c B A-A AAS B
S4B AuA AsB DA,
A AV, B A, D ANB AAvA
A 3xAAL) A; Aly) A;A(t)
A dxA € : vi INERyiE
=P A;Vx.A A:dix. A~
Classical Shared Intuitionistic
(Pereira & Pimentel 2022)
The idea:

Mne, A 0ff T,-AFne X
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Revisiting Pierce
Prove -; ((A —¢ B) —c A) —¢ Ain NE..

Rules:
[ A]
n
AA— B AA A:; B
— a8 E xas s !
[ B] [ Al
n n
AAS B AA A A, B;-
INE —E  Xas.B 7!
A A A; B
AA-dr aAagW
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Revisiting Pierce
Prove -; ((A —¢ B) —c A) —¢ Ain NE..

Answer:
= A

AL
L W,

[ (A —c B) = AP AB;- ¢ | [ AP

A (A—=cB) = A c AAS. B € A - der

2 —c E
A;-
3 —c !

S ((A—=c B) =c A) = A
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Answer:
= A

AL
L W,

[ (A —c B) = AP AB;- ¢ | [ AP

A (A—=cB) = A c AAS.B € A - der

2 —c E
A;-
3 —c !

S ((A—=c B) =c A) = A
More interestingly:
Fne, i ((A =) B) 26 A) e A

with j, k € {i, c}.
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Revisiting Pierce
Prove -; ((A —¢ B) —c A) —¢ Ain NE..

Answer:
= A
uder
L W,
[ (A —cB) =c AP AB;- ¢ | [ AP
) A(A—=:B)=cA ¢ AA—B '° A; -
3 A —c !

S ((A—=c B) =c A) = A
More interestingly:

l_NEs N ((A g B) —k A) —rc A
with j, k € {i, c}.
Look mom, no negation!

der
—c E
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Revisiting Pierce
Prove -; ((A —¢ B) —c A) —¢ Ain NE..

Answer:
= A
AL
A;- W
[1(A—=¢B) = AP AB;- ¢ | [ AP g
A(AScB) 5. A € AAS.B € A o
—c E
3 A el
(A= B)—=c A=A C
More interestingly:
Fne, i ((A =) B) 26 A) e A
with j, k € {i, c}.
Remember:
~A (A2
e e
1E
27 B- s ! A —; B) —; A
= (A —; B) —; Al .
A ! Al
n —E
c !
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What we can do with that

» Normalization
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What we can do with that

» Normalization
» Curry-Howard correspondence

> No double negation translation (Pereira & Pimentel & de Paiva 2025)

23 /47



Outline

Ecumenical terms
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M LE p-calculus

Terms:

Ax.t
t(s,x.r)
u(x,a). c
t[s, x.c]
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M LE p-calculus

Terms:

| Ax.t
| t(s,x.r)
| w(xa).c
| t[s,x.c]
|

F#c

Commands:
c == o]t
t[s, x.c]
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M LE p-calculus

Terms:

Commands:

Constructors: Ax. t and pu(x,a).c
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M LE p-calculus

Terms:

| Ax.t
| t(s,x.r)
| ulxa).c
| t[s,x.c]
|

F#c

Commands:
c == J[o]t
t[s, x.c]

Constructors: Ax. t and pu(x,a).c

Generalized applications: t (s, x.r) and t[s, x.r]

Activation operator: #c.

25 /47



Type system

Types:
AB = alA—>iB|A—=B

Typing judgments: T+ O : A; A, where O is a term or a command.

—_—ax
Tz:Abz: A A
Fx:AFt:B; A

I'tt:A—,B;A Thks:A;A Tyax:Bbr:C; A
— I E-—;
FXx.t:A—; B; A Tkt(s,zr):C; A
Tz:AFc:1L;Au{a: B} 'tt:A—=.B;A Trks:A;A T,z:Blc:L1;A

I-—. E-—¢

Tk u(z,a).c: A=, B; A Fktls,xc]:L; A

THt:A; A T'ke: LA

der _W;
THa]t: L; Au{a: A} Tk+#c:B; A
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Peirce typed!

Let
_—ax
Ny:Ary:A;3:B

=
T,y:AFaly: L;a:AB:B I,

Thpu(y,B).la]y:A—=cBia: A

where I = x : (A —¢ B) = A
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Peirce typed!

Let
_—ax
Ny:Ary:A;3:B

=
Ty: Ak tl;a:AB:B
Y [a]y: L;a: A5 I,

Thpu(y,B).la]y:A—=cBia: A

where I = x : (A —¢ B) = A

Then
—ax
T,y:AkFy:A;-

Ty Al oy Lo AT

: oly:L;a:
Y y .

X ™

a
Ttz:(A—:B)—=.A;a: A

TEap(y,B).[o]y,ylo]yl: Lia: A
(1(y. B8)- [y y.[o]y] : (A —e B) —c A) = As -

0+ p(z,a).
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Peirce typed!

Let
_——ax
T,y:AFy:A;3:B

der
= T,y:AFaly: L;a:AB:B

T,y: AF#[aly:B;a: A B3: B

i

THMy.#aly:A—iB;a: A

where I' = x : (A —; B) =/ A.
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Peirce typed!

Let
_——ax
T,y:AFy:A;3:B

der
= T,y:AFaly: L;a:AB:B

T,y: AF#[aly:B;a: A B3: B I
THMy.#aly:A—iB;a: A '

where I' = x : (A —; B) =/ A.

Then
: — ax
ax T Ny:AkFy:A;-
TFz:(A—=;B) = A;a: A d
My:Ab[dy:L;a: A B
Tk a Dy #la]yylaly] s Lya: A o

0k p(z, o).z Ny. #[a]y,y.la]y] : (A —; B) = A) = A -
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Outline

Modalities
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What is Modal Logic?

Carlos handsome.
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What is Modal Logic?
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What is Modal Logic?

Modal logic: qualifies truth
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What is Modal Logic?

Modal logic: qualifies truth

Carlos /V’ hﬂoWVb tO % handsome. (bdé, ‘Mb)

\

epistemic interpretation
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What is Modal Logic?

Modal logic: qualifies truth

Carlos /M Ld“'“‘dt to be handsome. ( b?, wa)

\

doxastic interpretation

30/47



What is Modal Logic?
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What is Modal Logic?

Modal logic: qualifies truth

Carlos /V’ 9wjld' tO.LO handsome.
e L
erbH"o/Lz

deontic interpretation

30/47



What is Modal Logic?

Modal logic: qualifies truth

Carlos M Tw handsome.
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What is Modal Logic?

Modal logic: qualifies truth

Carlos M Tow handsome.

will bo

\

temporal interpretation
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Modalities and propositions

Alethic interpretation

Carlos ,/1'/3 W“MM% handsome.
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Modalities and propositions

Alethic interpretation

MMMO/U«&} Carlos M handsome.
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Modalities and propositions

Alethic interpretation

p= Carlos/./) handsome

'ru.umml&}p
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Modalities and propositions

Alethic interpretation

p= GarlosM handsome

Clp
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Modalities and propositions

Alethic interpretation

Carlos M Wb&aﬁ/ handsome.
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Modalities and propositions

Alethic interpretation

WH?, Carlos M handsome.
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Modalities and propositions

Alethic interpretation

p= Car\os//’ handsome

ponitly, 7
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Modalities and propositions

Alethic interpretation

p= CarIOS/M handsome

Or
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Relational models

Truth table
A|B|A-B
1|1 1
1|0 0
011 1
010 1
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Relational models

Truth table
plalr—aq
1 1 1
110 0
0o 1
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Relational models

Truth tables
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Relational models

Generalizing
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Relational models

Adding relations

32/47



Relational models

Adding relations

32/47



Relational models

M= (W,R,V) @

W /Qq

®
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Relational models

M = (W,R,V)/ng
w.p

W is a non-empty set of possible worlds.
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Relational models

M= (W,R, V) o

/C)q
. wRy VRv

®,

R is the relative accessibility relation:

from the point of view of w, v is possible.
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Relational models

— Vv
M=WRV) @y vig=1
Vi O
W vRv
®,
V(p) =1

V assigns a truth value to a propositional
variable at a world.

32/47



Relational models

M= (W,R,V) ‘D

g Vig=1
m
W VRv

.P
Vip)=1
For non-atomic propositional formulas:

Just check the truth table
in each world!
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Relational models

M= (W,R,V) ‘@, vig=1
Vi O
W VRv

Vip) =1

M,w Fp—q M, vEDP—q
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Relational models

M = (W,R,V) ‘s

/C)q Vig)=1
. wRv VRY

e,
Vip)=1

How about modal formulas”?
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Relational models

M= (W,R,V) '©

g Vigg=1
m
w VRy

.P
V(p) = 1

A is necessary at a world u provided A
is true at every possible world from u.
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Relational models

_ v
M=WRY) @ vig=1
Vi O
W VvRv
®,
V) =1

A is possible at a world u provided A

is true at some possible world from u.
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Relational models

M = (W,R,

V) ‘@, V=1
ye
w VRvy

®,
Vip) =1

A,w F[p M,v E[p
A,wE g A,vE[qg

MowEP = q) Ay EP = q)
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Relational models for classical modal logic

M,wlkp iff p e V(w);

M,wlik L never holds;

M, wlF—-A iff M, w It A;

M,wlFAANB iff M,wl- Aand M, w |- B;
M,wl-AV B iff M,wli-Aor M, wl B,
Mwl-A—=B  iff  MwlfAor M,wl B;

M, wlFOA iff for all v. wRv implies M, v I A,

M,wlFCA iff there exists v. wRv and M, v |- A.
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Relational models for intuitionistic logic

M,wlkp

M w - L
M,wlE—-A
M,wiFAAB
M,wil-Av B
M,wlFA— B

iff

iff
iff
iff
iff

p € V(w);

never holds;

forall v.w < v. M, v If A;
M,wl-Aand M,w - B;
M,wlFAor M,w - B,

forall v.w < v. M, v I A implies M

,vIFB.
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Outline

The challenge of constructive modal logic
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Classical Modal Logic

» Formulas: Au=p|L|ArNA|AVA|A—SA|DOA|CA
» Duality by De Morgan laws and -0A = ¢—-A
» Axioms: classical propositional logic and
k: o(A— B) — (0DA—0OB)

A A—B L A

» Rules: modus ponens: ———— necessitation: —
B A

> Semantics: Relational structures (W, R)

a non-empty set W of worlds;

a binary relation R C W x W;
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Intuitionistic Modal Logic
» Formulas: Au=p|L|ArNA|AVA|A—SA|DOA|CA
» Independence of the modalities

» Axioms: intuitionistic propositional logic and
k: o(A— B) — (0DA—0OB)

A A—B L
» Rules: modus ponens: — 5 necessitation:
> Semantics: Birelational structures (W, R, <)
F ’ R ’
a non-empty set W of worlds; (F) w v
a binary relation R C W x W; < <
a preorder < on W. u—"L v
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Intuitionistic Modal Logic

» Formulas: Au=p|L|ArNA|AVA|A—SA|DOA|CA
» Independence of the modalities
» Axioms: intuitionistic propositional logic and

ki: O(A— B) — (DA — 0OB)  CK (Fitch 1948)
ko: O(A— B) —» (CA— ©OB)

A A—B L A
» Rules: modus ponens: ———— necessitation: Py

B

> Semantics: Birelational structures (W, R, <)
R

a non-empty set W of worlds; (R) o v
a binary relation R C W x W; < <
a preorder < on W. u—"L
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Intuitionistic Modal Logic

v

Formulas: A:=p|L|ArA|AVA|A—A|DOA|OA

v

Independence of the modalities

v

Axioms: intuitionistic propositional logic and
ki: O(A— B) — (0DA—0OB)
ke: O(A— B) —» (CA— ©B)
k3: O(Av B) = (CAV OB)

ks: =OL

A A—B L A
Rules: modus ponens: ——— necessitation: Py

B

v

v

Semantics: Birelational structures (W, R, <)

R
a non-empty set W of worlds; (F) o v (FR) v’
a binary relation R C W x W; <

a preorder < on W. u
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Intuitionistic Modal Logic

» Formulas: Au=p|L|ArNA|AVA|A—SA|DOA|CA
» Independence of the modalities
» Axioms: intuitionistic propositional logic and
ki: O(A— B) — (DA —0OB)  IK (Plotkin and Stirling 1986)
ke: O(A— B) —» (CA— ©OB)
k3: O(Av B) = (CAV OB)
ks: (CA—0OB) — O(A— B)
ks: =L
A A—B L A
» Rules: modus ponens: ———— necessitation: —
B A
> Semantics: Birelational structures (W, R, <)
’ R ’ ’ R ’
a non-empty set W of worlds; (R) v v (F) w v
a binary relation R C W x W; < < < <
a preorder < on W. S u—F

xEF DA Vy,z if x<y & yRz then zEF A
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Intuitionistic Modal Logic

v

Formulas: A:=p|L|ArA|AVA|A—A|DOA|OA

v

Independence of the modalities

v

Axioms: intuitionistic propositional logic and

ki: O(A— B) — (0DA—0OB)
ke: O(A— B) —» (CA— ©B)
ks: O(Av B) = (CAV OB)
ks: (CA—0OB) — O(A— B)
ks: ~OL

A A—B L A
Rules: modus ponens: ——— necessitation: Py

B

v

v

Semantics: Birelational structures (W, R, <)
R

a non-empty set W of worlds; (F) o v (FR) v’

a binary relation R C W x W; <

IN
IN

R

a preorder < on W. u

xEF DA Vy,z if x<y & yRz then zEF A

xEOAL Jy.xRy and yEFA
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Classical modal proof theory

Axioms: classical propositional logic and

k: o(A— B)— (DA—0B)

Sequent system: classical sequent calculus and
r=A
“ork-oA
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Intuitionistic modal proof theory

Axioms: intuitionistic propositional logic and

ki: O(A— B) — (DA—0OB)
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Sequent system: intuitionistic sequent calculus and
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Intuitionistic modal proof theory

Axioms: intuitionistic propositional logic and

ki: O(A— B) — (DA—0OB)
ko: O(A— B) —» (CA— ©OB)
ks: O(AV B) = (CA vV OB)
ks: (CA—0OB) - O(A— B)
ks: =OL

Sequent system: intuitionistic sequent calculus and
r-A MNAFA

o——— ko—+7——+
ol FoA ar,CAE CA

Problem? k, is not derivable.

» not a problem for modal type theory...
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Intuitionistic modal proof theory

Axioms: intuitionistic propositional logic and

ki: O(A— B) — (DA—0OB)
ko: O(A— B) —» (CA— ©OB)
ks: O(Av B) = (CAV OB)
ks: (CA—0OB) - O(A— B)
ks: =OL
Sequent system: intuitionistic sequent calculus and
r-A i} MNAFA
“or-oA  Cor,oAk OA

Problem? ks is not derivable.
» not a problem for modal type theory...

labeled sequent system: (Simpson 1994)

xRy,l,x:0A,y:A=2z:B xRy, =y : A

Ou Or y is fresh
xRy, I, x:0A=2z:B M= x:0A
xRy,lly:A=2z:B xRy, T =y A
L y is fresh Op—m——————
Mx:CA=2z:B xRy, = x: CA 3747



Outline

Ecumenical modal logic
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Ecumenical modalities

(DAL = Vy(R(x,y) — [Al,) [CAL = Fy(R(x,¥) AA])
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Ecumenical modalities

(DAL = Vy(R(x,y) — [Al,) [CAL = Fy(R(x,¥) AA])

M,w E=DOA iff for all v such that wRv, M,v = A.
M, w = OA iff there exists v such that wRv and M, v E A.

R(x, y) represents the accessibility relation R in a Kripke frame.
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Ecumenical modalities

(DAL = Vy(R(x,y) — [Al,) [CAL = Fy(R(x,¥) AA])

For A Iff b Vx.JAl

» ML = classical logic ~ OL = classical modal logic K.
» ML = intuitionistic logic ~ OL = intuitionistic modal logic IK.
» ML = Ecumenical logic ~ OL = Ecumenical modal logic EK.
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Ecumenical modalities

(DAL = Vy(R(x, ) =i [Aly)
[CIAlL = Fiy (RO y) ATAL)  [OALR = 3ey(R(x, y) A LAY)

@O

A
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Ecumenical modalities

[DA]S = Vy(R(x,y) =i [Al})

[CiAlL = Fiy (R ) ATAL)  [OALR = Fey(R(x,y) A ALY)

> OA i —O-A but OA &4 —[-A.
» Restricted to the classical fragment: [0 and <. are duals.
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Ecumenical Modal Logic

> Formulas: A:u=pj|p.| L|ANA|AViA|AVCA|A—=AJA—=CA|
DA | OA| OA

» Independence of the modalities

» Axioms: ecumenical propositional logic and

ki: O(A—i B) =i (DA —;0OB)  EK (Marin et al. 2020)
ko : D(A — B) —> (O,’A — O,‘B)

ks: <>;(A Vi B) —i (<>A Vi <>B)

kg : (<>,'A —i \]B) —>i D(A —i B)

k5: ﬁ<>,'J_

A A—B L
» Rules: modus ponens: — 5 necessitation: pvry

» Semantics: Ecumenical Birelational structures (W, R, <)
R

a non-empty set W of worlds; (F) o v (R) o v
a binary relation R C W x W; < < < <
a preorder < on W. u—"L v u—F
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Ecumenical Modal Logic

» Formulas: Au=pj|p.| L|ANA|AViA|AVCAIA= AIA—=CA|

OA| OiA|OA

» Independence of the modalities

» Axioms: ecumenical propositional logic and
ki: O(A —; B) - (DA —;0OB)  EK (Marin et al. 2020)
kz: D(A —i B) —>i (<>,'A —i <>,‘B)
ks : O,‘(A Vi B) —i (<>A Vi <>B)
ke: (O;A —; OB) —; 0O(A —; B)
k5: —|<>,'J_

A A—B L A
» Rules: modus ponens: —5 necessitation: =

» Semantics: Ecumenical Birelational structures (W, R, <)

a non-empty set W of worlds;
a binary relation R C W x W;
a preorder < on W.

M,w e QA Iff Vv >wIuv(KoRo<)u, M,uke A
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Ecumenical modal proof theory

Labeled modal rules:

xRy, TFy: A

N-x:0A Uk
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Ecumenical modal proof theory

Labeled modal rules:

x:O0-ATkFx: L

OcR xRy, TFy: A

xRy, Ty A

MN=x:0A OoRrR xRy, I Fx:OiA
c TFx:0A Y '
Extensions:
Axiom Condition First-Order Formula
T: A=, ANA —; OA Reflexivity Vx.R(x, x)
4: OA —; OOAA QO 0A —; OA Transitivity Vvx,y,z.(R(x,y) N R(y, z)) —; R(x, z)
5: OA —; O0,AAN O;LA —; O;A Euclideaness Vx,y,z.(R(x,y) A R(x, z)) —; R(y, z)
B: A—; U0AANQ LA —; A Symmetry Vx,y.R(x,y) —; R(y, x)
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Ecumenic

al modal proof theory

Labeled modal rules:

x:O0-ATkFx: L ] xRy, Ty A
T oA CR L MBITY A L Ry, T x OA
X = a— X X i
c TFx:0A Y '
Extensions:
Axiom Condition First-Order Formula
T: A=, ANA —; OA Reflexivity Vx.R(x, x)
4: OA —; OOAA QO 0A —; OA Transitivity Vvx,y,z.(R(x,y) N R(y, z)) —; R(x, z)
5: OA —; O0,AAN O;LA —; O;A Euclideaness Vx,y,z.(R(x,y) A R(x, z)) —; R(y, z)
B: A—; U0AANQ LA —; A Symmetry Vx,y.R(x,y) —; R(y, x)

Rules:

xRx,TFw:C
r-w:cC

yRz,TFw:C

xRy, xRz, T +w: C

xRz, T+w:C A
xRy,yRz,T = w: C

yRx,TFw:C
xRy, TFw: C

OiR
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Crossing the fine line!!

Easy to prove: Flabek X 1 OA —; =<O—A.
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Crossing the fine line!!
Easy to prove: Flabek X 1 OA —; =<O—A.

Assume T + =<$;—A —; OA. Then

xRy,y i Ay : =(AVi-A)Fy: A Init
xRy,y 1A,y i ~(AVi-A)kFy: L
xRy,y : =(AVi-A)F x: L ol -
x:Oin(AVi-A)Fx: L ! xRx,x : (AVi=A)E x: AV;-A
- x 1 =0(AV; —A) eqﬁR XRxx (O(AV, -A F x - Av, A oL
Fx:0O(AVi-A) x:0O(AV-A)Fx:AVi-A
Fx: AV A cut
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Crossing the fine line!!
Easy to prove: Flabek X 1 OA —; =<O—A.

Assume T + =<$;—A —; OA. Then

xRy,y i Ay : =(AVi-A)Fy: A it

xRy,y 1A,y i ~(AVi-A)kFy: L
xRy,y : =(AVi-=A)bF x: L

x:O(AVi-A) Fx: L oit xRx,x : (AV;-A)F x: AV;-A it
F x : ~0i~(AV; —A) eﬁR XRxx - O(AV, -AYF x:Av, -A Pt
Fx:0O(AVi-A) x:0O(AV-A)Fx:AVi-A
Fx: AV, A cut
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Outline

Purity!
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Getting rid of negation

r-AFC
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Getting rid of negation

_ LCE
M-AFC M-A;C
nACB MA-AB
-A— B T-M5A— B

rA-BF L
—c R

rMN-A—cB
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Getting rid of negation

r-AkFC
rAFB

TFA— B
rA-BF L

Tras.B <R

LCE

FT-A;C
MAFA;B
T-AA— B
MAFB,A;-

i

FTFAS.B,A- ¢

R

R
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Getting rid of negation

- LCE
r-AFC rEA;C
rA-B . MAFA:B .
-A— B T-M5A— B
rA-BrL [ Ak B,A;- .
FrFAS.B ¢ FTFAS.B,A- ¢

labEK

x:O0-ATkFx:L1

Nke=x:0A OcR
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Getting rid of negation

s LCE
Ak C FEA:C
rAFB . FAFA:B .
FrFA—. B FTFAA— B
LA-BFL FAFB,A:- .
FrFAS.B ¢ FTFAS.B,A- ¢
labEK - Pure labEK
x:O0-ATkFx:L1 xRy, Ty A x:OAA;-
A A LS ey R

NEx:OA xRy, T x:OAA;-
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Concluding
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The ecumenical future

» Real Ecumenical Mathematics!!! We know that if all operators have a
constructive “reading”, the axiom of choice is a theorem in Martin-Lof
Type Theory. But what would happen if we have hybrid readings of these

same operators?
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The ecumenical future

» Real Ecumenical Mathematics!!! We know that if all operators have a
constructive “reading”, the axiom of choice is a theorem in Martin-Lof
Type Theory. But what would happen if we have hybrid readings of these
same operators?

» Applications in Computer Science!!!

> New ecumenical codifications. We have showned several ecumenical
systems for classical and intuitionistic logic. What about other logics?

> Barroso-Nascimento has an ecumenical system for intuitionistic and minimal
logic;

» Sernada and Rasga have an ecumenical system for intuitionistic logic and
classical S4;

» Rasga and Sernadas: how to systematically connect translations to
ecumenical systems and propose an ecumenical system for classical logic
and Jaskowski's paraconsistent logic.

46 / 47



The ecumenical future

» Real Ecumenical Mathematics!!! We know that if all operators have a
constructive “reading”, the axiom of choice is a theorem in Martin-Lof
Type Theory. But what would happen if we have hybrid readings of these
same operators?

» Applications in Computer Science!!!

> New ecumenical codifications. We have showned several ecumenical
systems for classical and intuitionistic logic. What about other logics?

> Barroso-Nascimento has an ecumenical system for intuitionistic and minimal
logic;
» Sernada and Rasga have an ecumenical system for intuitionistic logic and

classical S4;

» Rasga and Sernadas: how to systematically connect translations to
ecumenical systems and propose an ecumenical system for classical logic
and Jaskowski's paraconsistent logic.

» Semantics!! Ongoing works with Victor Barroso-Nascimento, Luiz Carlos
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» Real Ecumenical Mathematics!!! We know that if all operators have a
constructive “reading”, the axiom of choice is a theorem in Martin-Lof
Type Theory. But what would happen if we have hybrid readings of these
same operators?

» Applications in Computer Science!!!

> New ecumenical codifications. We have showned several ecumenical
systems for classical and intuitionistic logic. What about other logics?

> Barroso-Nascimento has an ecumenical system for intuitionistic and minimal
logic;

» Sernada and Rasga have an ecumenical system for intuitionistic logic and
classical S4;

» Rasga and Sernadas: how to systematically connect translations to
ecumenical systems and propose an ecumenical system for classical logic
and Jaskowski's paraconsistent logic.

» Semantics!! Ongoing works with Victor Barroso-Nascimento, Luiz Carlos
Pereira and Marcelo Coniglio.

> etcll!
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End of the talk

Obrigadalll

Gracias!!!

Taing mhor!!!

©
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