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A classical logic fairy tale

Narrator. Once upon a time, in a kingdom far, far away, the
queen of the country and of all Möbius strips called for her royal
philosopher.

Queen. Philosopher! I ask you to carry out the following order.
Get me the Philosopher’s Stone, or alternatively find out how
one could produce arbitrary amounts of gold with it!

Philosopher. But my queen! I haven’t studied anything useful!
How could I fulfill this order?

Queen. That is not my concern. I’ll see you again tomorrow.
Should you not accomplish the task, I will take your head off.

Narrator. After a long and wakeful night the philosopher was
called to the queen again.

Queen. Tell me! What do you have to report?

Philosopher. It was not easy and I needed to follow lots of
obscure references, but finally I actually found out how to use

the Philosopher’s Stone to produce arbitrary amounts of gold.
But only I can conduct this procedure, your royal highness.

Queen. Alright. So be it.

Narrator. And so years passed by, during which the philosopher
imagined herself to be safe. The queen searched for the stone
on her own, but as long as she hadn’t found it, the philosopher
didn’t need to worry. Yet one day the impossible happened: The
queen has found the stone! And promptly called for her philoso-
pher.

Queen. Philosopher, look! I have found the Philosopher’s Stone!
Now live up to your promise! [She hands over the stone.]

Philosopher. Thank you. [She inspects the stone.] This is indeed
the Philosopher’s Stone. Many years ago you asked me to either
acquire the Philosopher’s Stone or find out how to produce arbi-
trary amounts of gold using it. Now it’s my pleasure to present
to you the Philosopher’s Stone. [She returns the stone.]
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A classical logic fairy tale

Adapted from Edward Yang’s blog.

The idea conveyed in the fairy tale is at the core of the constructive proof of ¬¬(A ∨ ¬A). While the law of
excluded middle (lem) is not available in constructive mathematics, up to a double negation every instance of
it is.

This observation gives rise to the double negation translation, a transformation of (statements and) proofs in
classical logic to proofs in intuitionistic logic, at the only expense of introducing double negations; by following
this up with Friedman’s trick with the nontrivial exit continuation (“Baby Barr Theorem”), we can in many
cases even get rid of these double negations in a second step.

Getting rid of applications of the law of excluded middle is in many contexts (an amazing mind-boggingly
wonder at first, but then) a routine matter—see here for more details and pointers to the literature.

http://blog.ezyang.com/2013/04/a-classical-logic-fairy-tale/
https://rt.quasicoherent.io/


A case study in Hilbert’s program

Def. Let (X ,≤) be a quasi-order.

A sequence α : N → X is good iff there merely exist i < j with α i ≤ α j.
The quasi-order X is well iff every sequence N → X is good.

Natural numbers

Prop. (N,≤) is well. Ó
Proof. Let α : N → N. By lem , there is a
minimum α i. Set j := i + 1.

offensive?

Key stability results

Assuming lem and dc , . . .
Dickson: If X and Y are well, so is X × Y .
Higman: If X is well, so is ListX .
Kruskal: If X is well, so is TreeX .

Def. A quasi-order X is wellind iff G [ ], where G is the following inductively defined predicate
on finite lists. Ó (In presence of bar induction, wellind ⇔ well∞.)

p : Goodσ
now p : G σ

f : (x : X) → G (σ ::r x)
later f : G σ
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A case study in Hilbert’s program

Well quasi-orders are an important notion in proof theory and termination analysis.
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A case study in Hilbert’s program

The presented proof rests on the law of excluded middle and hence cannot immediately be interpreted as a
program for finding suitable indices i < j. However, constructive proofs are also possible (for instance by
induction on the value of a given term of the sequence, see Constructive combinatorics of Dickson’s Lemma
by Iosif Petrakis for several fine quantitative results). And even more: There is a procedure for regarding this
proof—and many others in the theory of well quasi-orders—as blueprints for more informative constructive
proofs. This shall be our motto for today:

Do not take classical proofs literally, instead ask which constructive proofs they are blueprints for.

https://www.math.lmu.de/~petrakis/Dickson.pdf
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A case study in Hilbert’s program

The presented proof rests on the law of excluded middle and hence cannot immediately be interpreted as a
program for finding suitable indices i < j. However, constructive proofs are also possible (for instance by
induction on the value of a given term of the sequence, see Constructive combinatorics of Dickson’s Lemma
by Iosif Petrakis for several fine quantitative results). And even more: There is a procedure for regarding this
proof—and many others in the theory of well quasi-orders—as blueprints for more informative constructive
proofs. This shall be our motto for today:

Do not take classical proofs literally, instead ask which constructive proofs they are blueprints for.

The displayed stability results, along with several others, provide a flexible toolbox for constructing new well
quasi-orders from given ones. However, with the classical formulation of well, shortly to be renamed “well∞”,
these results are inherently classical (even the weaker claim “the product of two streamless sets is streamless”
admits countermodels).

(In Higman’s lemma, the set X∗ of finite lists of elements of X is equipped with the following ordering: We
have (x0 :: . . . :: xn−1 :: [ ]) ≤ (y0 :: . . . :: ym−1 :: [ ]) iff there is an increasing injection f : {0, . . . , n− 1} →
{0, . . . ,m−1} such that xi ≤ yf (i) for all i < n. Kruskal’s theorem is the result behind the celebrated enormous
number TREE(3).)

https://www.math.lmu.de/~petrakis/Dickson.pdf
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Orthogonal.html


A case study in Hilbert’s program

Def. Let (X ,≤) be a quasi-order.
A sequence α : N → X is good iff there merely exist i < j with α i ≤ α j.
The quasi-order X is well∞ iff every sequence N → X is good.

Natural numbers

Prop. (N,≤) is well∞. Ó
Proof. Let α : N → N. By lem , there is a
minimum α i. Set j := i + 1.

offensive?

7 , 4 , 3 , 1 , 8 , 2 , . . .

≤

Key stability results

Assuming lem and dc , . . .
Dickson: If X and Y are well∞, so is X × Y .
Higman: If X is well∞, so is ListX .
Kruskal: If X is well∞, so is TreeX .

Def. A quasi-order X is wellind iff G [ ], where G is the following inductively defined predicate
on finite lists. Ó (In presence of bar induction, wellind ⇔ well∞.)

p : Goodσ
now p : G σ

f : (x : X) → G (σ ::r x)
later f : G σ

1 / 7

20
25
-0
6-
20

Towards topological type theory for decrypting transfinite methods in
classical mathematics

A case study in Hilbert’s program



A case study in Hilbert’s program

Def. Let (X ,≤) be a quasi-order.
A sequence α : N → X is good iff there merely exist i < j with α i ≤ α j.
The quasi-order X is well∞ iff every sequence N → X is good.

Natural numbers

Prop. (N,≤) is well∞. Ó
Proof. Let α : N → N. By lem , there is a
minimum α i. Set j := i + 1.

offensive?

7 , 4 , 3 , 1 , 8 , 2 , . . .

≤

Key stability results

Assuming lem and dc , . . .
Dickson: If X and Y are well∞, so is X × Y .
Higman: If X is well∞, so is ListX .
Kruskal: If X is well∞, so is TreeX .

Def. A quasi-order X is wellind iff G [ ], where G is the following inductively defined predicate
on finite lists. Ó (In presence of bar induction, wellind ⇔ well∞.)

p : Goodσ
now p : G σ

f : (x : X) → G (σ ::r x)
later f : G σ

1 / 7

20
25
-0
6-
20

Towards topological type theory for decrypting transfinite methods in
classical mathematics

A case study in Hilbert’s program



A case study in Hilbert’s program

Def. Let (X ,≤) be a quasi-order.
A sequence α : N → X is good iff there merely exist i < j with α i ≤ α j.
The quasi-order X is well∞ iff every sequence N → X is good.

Natural numbers

Prop. (N,≤) is well∞. Ó
Proof. Let α : N → N. By lem , there is a
minimum α i. Set j := i + 1.

offensive?

7 , 4 , 3 , 1 , 8 , 2 , . . .

≤

Key stability results

Constructively, . . .
Dickson: If X and Y are wellind, so is X × Y .
Higman: If X is wellind, so is ListX .
Kruskal: If X is wellind, so is TreeX .

Def. A quasi-order X is wellind iff G [ ], where G is the following inductively defined predicate
on finite lists. Ó (In presence of bar induction, wellind ⇔ well∞.)

p : Goodσ
now p : G σ

f : (x : X) → G (σ ::r x)
later f : G σ

1 / 7

20
25
-0
6-
20

Towards topological type theory for decrypting transfinite methods in
classical mathematics

A case study in Hilbert’s program



A case study in Hilbert’s program

Def. Let (X ,≤) be a quasi-order.

A sequence α : N → X is good iff there merely exist i < j with α i ≤ α j.
The quasi-order X is well∞ iff every sequence N → X is good.

Natural numbers

Prop. (N,≤) is well∞. Ó
Proof. Let α : N → N. By lem , there is a
minimum α i. Set j := i + 1.

offensive?

Key stability results

Constructively, . . .
Dickson: If X and Y are wellind, so is X × Y .
Higman: If X is wellind, so is ListX .
Kruskal: If X is wellind, so is TreeX .

Def. A quasi-order X is wellind iff G [ ], where G is the following inductively defined predicate
on finite lists. Ó (In presence of bar induction, wellind ⇔ well∞.)

p : Goodσ
now p : G σ

f : (x : X) → G (σ ::r x)
later f : G σ

1 / 7

20
25
-0
6-
20

Towards topological type theory for decrypting transfinite methods in
classical mathematics

A case study in Hilbert’s program

Thanks to work by Thierry Coquand, Daniel Fridlender and Monika Seisenberger, a constructive substitute
is available, the notion wellind. In classical mathematics (where bar induction is available), this notion is
equivalent to well∞.

The predicate Good of finite lists σ = (x0 :: . . . :: xn−1 :: [ ]) appearing in the definition of G expresses that
some earlier term is at most some later term, i. e. that there merely exist i < j such that xi ≤ xj .

The operator ::r is adding an element at the end.



A case study in Hilbert’s program

Def. Let (X ,≤) be a quasi-order.
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on finite lists. Ó (In presence of bar induction, wellind ⇔ well∞.)
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Is there a procedure for reinterpreting classical proofs regarding well∞ as
blueprints for constructive proofs regarding wellind?
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A case study in Hilbert’s program

The original notion well∞:
✓ short and simple
✓ constructively satisfied for the main examples (but only because

of the theory around wellind)
✓ concise abstract proofs (albeit employing transfinite methods)
✗ main results not constructively attainable
✗ philosophically strenuous by the quantification over all sequences
✗ not stable under “change of base”—a forcing extension of the

universe may well contain more sequences than the base universe
✗ negative (universal) condition

The constructive substitute wellind:
✓ main results constructive
✓ stable under change of base
✓ positive (existential) condition
✗ proofs intriguing, but also

somewhat alien, not just some
trivial reshuffling of the clas-
sical arguments; classical se-
quence language cannot be
used



Missing functions in the type of all functions?

Behold: A transfinite tool . . .

Lemma. lem Let X be well∞. Let α : N → X . Then
there is an increasing subsequence α i0 ≤ α i1 ≤ · · · .

Proof.
1 The type I :=

∑
i :N ¬

∑
j :N i < j × α i ≤ α j is not in

bijection withN, as else the I -extracted subsequence of α
would not be good.

2 By lem , the type I is finite.
3 Any index i0 larger than all the indices in I is a suitable

starting point for an increasing subsequence.

. . . implying a concrete consequence

Cor. lem Let X and Y be well∞.
Then X × Y is well∞.

Proof.
1 Let a sequence γ : N → X × Y be given.

Write γ k = (α k, β k).
2 By the lemma, there is an increasing sub-

sequence α i0 ≤ α i1 ≤ · · · .
3 Because Y is well, there are indices n < m

such that β in ≤ β im.
4 As also α in ≤ α im, the sequence γ is

good.

� We cannot trust lem-provided sequences to be available in the type N → X.
Similarly with dc.
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Missing functions in the type of all functions?

The double negation translation technique fails to constructivize the two proofs presented on the slide.

The reason is that, after applying the translation, the “I -extracted subsequence” appearing in the proof on
the left will no longer actually be a function N → X . Instead, it will be a partially defined function with the
property that each number n does not not belong to the domain. However, the assumption that X is well∞
does not apply to these kinds of generalized sequences.

In contrast, the notion wellind is much stronger. If X is wellind, then not only will every actual sequence N → X
be good, but (in a suitable sense) so will every up-to-¬¬-partially-defined sequence, every multivalued sequence
and many more kinds of generalized sequences.



Where do many cherished inductive definitions come from?

In mathematics, we routinely enlarge structures:
Pass from Q to R, to embrace irrationals.
Pass from R to C, to obtain

√
−1.

Pass from C to C[X ], to obtain a “generic number”.

In set and type theory, we can also enlarge the mathematical universe:
Force a generic sequence N → X .

Ó

Ó

Force a generic enumeration N↠ X (even if X is uncountable).

Ó

Ó

Force a generic prime ideal of a given ring.

Ó

Ó

Central observations of the multiversal yoga:
A quasi-order X is wellind iff the generic sequence N → X is good.
A set is Noetherian iff the generic sequence N → X has two repeated terms.
A relation is well-founded iff for the generic descending chain, ⊥.
A ring element is nilpotent iff it is contained in the generic prime ideal.

Ó

Ó

The mystery of nongeometric sequents:
The generic ring is a field.
For the generic surjection f : N↠ R, ¬¬∃n :N. f (n) = π ∧ f (n+ 1) = e.

Ó

Ó
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Where do many cherished inductive definitions come from?

The technique for enlarging the mathematical universe is called forcing and was originally pioneered by Paul
Cohen. Set theorists use forcing to construct new models of set theory from given ones, in order to explore
the range of set-theoretic possibility. For instance, by forcing we can construct models of zfc validating the
continuum hypothesis and also models which falsify it.

We here refer to a simplification of original forcing which is useful in a constructive metatheory. At its core,
every forcing extension is just a formula and proof translation of a certain form. For instance, there is a forcing
extension validating lem even if the base universe does not; this forcing extension is not a deep mystery, for a
statement holds in that forcing extension iff its double negation translation holds in the base universe and it is
well-known that the double negation translation of every instance of lem is an intuitionistic tautology.

Here is a set of slides on constructive forcing, and Section 4 of this joint paper with Peter Schuster contains a
written summary of constructive forcing.

https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Cohen.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Cohen.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html#corollary
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html#corollary
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://www.speicherleck.de/iblech/stuff/slides-herrsching2023.pdf
https://raw.githubusercontent.com/iblech/constructive-maximal-ideals/master/tex/extended.pdf
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Where do many cherished inductive definitions come from?

Forcing the existence of a new function N → X is also called Cohen forcing. Forcing the existence of a
new surjection is called Lévy collapse. Forcing the existence of a prime ideal does not have an established
name, perhaps it should be called Zariski forcing; it has been explored by Thierry Coquand and others of the
constructive algebra crew.

The multiversal yoga allows us to reason with the good notion wellind using the simple language of well∞, and
similarly with several other notions.

https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Cohen.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Cohen.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html#corollary
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html#corollary
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
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Where do many cherished inductive definitions come from?

For more on the mystery of nongeometric sequents, see this set of slides.

https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Cohen.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Cohen.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html#corollary
https://iblech.github.io/constructive-maximal-ideals/Forcing.Prime.html#corollary
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://www.speicherleck.de/iblech/stuff/slides-birmingham2019.pdf


A modal language for harnessing the multiverse

Def. A statement φ holds . . .
everywhere ( φ) iff it holds in every topos (over the current base).
somewhere ( φ) iff it holds in some positive topos.
proximally ( φ) iff it holds in some positive overt topos.

We then have:

1 Wellind(X ,≤) ⇐⇒ Well∞(X ,≤).
2 ( φ) ⇐⇒ φ, if φ is a geometric implication (“∀ . . . ∀(% ⇒ %)”, with no ∀ nor⇒ in%).

Ó

Ó

3 ( φ) ⇐⇒ φ, if φ is a bounded first-order statement.

Ó

Ó

4 For every inhabited type X , Countable(X),
where Countable(X) :≡ (∃f : N → X . Surjective(f )).

Ó

Ó

So being countable is a button.
5 lem . (Baby Barr / Friedman’s trick / nontrivial exit continuation)

In fact, lem is a switch:
(
( lem ) ∧ ( ¬ lem )

)
6 zorn ⇒ ac . (Great Barr)
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A modal language for harnessing the multiverse

By topos, we mean Grothendieck topos. In constructive forcing, a “forcing extension of the base universe” is
exactly the same thing as a Grothendieck topos.

A particular member of the rich and varied landscape of toposes is the trivial topos, in which every statement
whatsoever holds. By restricting to positive toposes, we exclude this special case.

For positive toposes E , a geometric implication holds in E iff it holds in the base universe. For positive overt
toposes E , we even have that a bounded first-order formula holds in E iff it holds in the base. Hence, for the
purpose of verifying a bounded first-order assertion about the base, we can freely pass to a positive overt topos
with problem-adapted better higher-order properties (such as that some uncountable set from the base now
appears countable, or that an infinite sequence whose existence is predicted by failing dependent choice now
actually exists).

Here is a rough early draft of a preprint with more details about the modal multiverse.

https://iblech.github.io/constructive-maximal-ideals/Forcing.Semantics.html#CoherentEquivalence
https://iblech.github.io/constructive-maximal-ideals/Forcing.Semantics.html#CoherentEquivalence
https://iblech.github.io/constructive-maximal-ideals/Forcing.Semantics.html#1%CB%A2%E1%B5%97OrderEquivalence
https://iblech.github.io/constructive-maximal-ideals/Forcing.Semantics.html#1%CB%A2%E1%B5%97OrderEquivalence
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://lets-play-agda.quasicoherent.io/Padova2025.Explorations.Forcing.Levy.html
https://www.speicherleck.de/iblech/stuff/early-draft-modal-multiverse.pdf


A modal language for harnessing the multiverse

Def. A statement φ holds . . .
everywhere ( φ) iff it holds in every topos (over the current base).
somewhere ( φ) iff it holds in some positive topos.
proximally ( φ) iff it holds in some positive overt topos.

We then have:

1 Wellind(X ,≤) ⇐⇒ Well∞(X ,≤).
2 ( φ) ⇐⇒ φ, if φ is a geometric implication (“∀ . . . ∀(% ⇒ %)”, with no ∀ nor⇒ in%).

Ó

Ó

3 ( φ) ⇐⇒ φ, if φ is a bounded first-order statement.

Ó

Ó

4 For every inhabited type X , Countable(X),
where Countable(X) :≡ (∃f : N → X . Surjective(f )).

Ó

Ó

So being countable is a button.
5 lem . (Baby Barr / Friedman’s trick / nontrivial exit continuation)

In fact, lem is a switch:
(
( lem ) ∧ ( ¬ lem )

)
6 zorn ⇒ ac . (Great Barr)
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A modal language for harnessing the multiverse

The idea to study the modal multiverse of toposes in a principled manner was proposed by Alexander Oldenziel
in 2016. Foreshadowed by:

1984 André Joyal, Miles Tierney. “An extension of the Galois theory of Grothendieck”.
1987 Andreas Blass. “Well-ordering and induction in intuitionistic logic and topoi”.
2010s Milly Maietti, Steve Vickers. Ongoing work on arithmetic universes.
2011 Joel David Hamkins. “The set-theoretic multiverse”.
2013 Shawn Henry. “Classifying topoi and preservation of higher order logic by geometric morphisms”.
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A modal language for harnessing the multiverse

With the modal language we seek to provide an accessible and modular framework for constructivization
results.

For instance, conservativity of classical logic over intuitionistic logic for geometric implications (known under
various names such as Barr’s theorem, Friedman’s trick, escaping the continuation monad, . . . ) is packaged up
by the observation that somewhere, the law of excluded middle holds.

Another example: In the community around Krull’s lemma, it is well-known that we can constructively infer
that a given ring element x ∈ A is nilpotent from knowing that it is contained in the generic prime ideal of A.
This entity is not actually an honest prime ideal of the ring A in the base universe, but a certain combinatorial
notion (efficiently dealt with using entailment relations). Constructive forcing allows us to reify the generic
prime ideal as an actual prime ideal in a suitable forcing extension, so in a suitable topos (a version of the little
Zariski topos of the ring).
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The plain combinatorics of toposes

1 Realize a generic gadget as some kind of limit of approximations from the base universe.
For the generic function f0 : N → X :

L : Set
L = List X

2 Reinterpret, in a mechanical fashion, assertions about the generic gadget as assertions
about its approximations (

Ó

Ó).
We have the stage-dependent proposition “f0 n = x”, a certain function L → Prop:
λσ. (lookupMaybeσ n = just x)

3 Be prepared to evolve approximations (

Ó

Ó).
data∇ (P : L → Prop) : L → Prop where
now : {σ : L} → P σ → ∇ P σ
later : {σ : L} → ((x : X) → ∇ P (σ ::r x)) → ∇ P σ

For a stage-dependent proposition P : L → Prop,∇ P σ expresses that no matter how σ will
evolve over a time to a better approximation τ , eventually P τ will hold.
That f0 is defined on input n can be expressed as ∇ P [ ] where P σ :≡ (lengthσ > n).

4 Crucially, this interpretation is sound with respect to constructive reasoning.
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The plain combinatorics of toposes

Proofs (about the base universe) are (pure) programs; proofs about a forcing extension are effectful programs
unfolding in the ∇ monad.

The ∇ monad is a refinement of the (monotonic) state monad.
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Formal metatheory
✓ There are type-theoretic multiverses, such as

the collection of all PSh(C × B), where B ranges over cube categories and C over arbitrary small
categories, and their corresponding sheaf models
Coquand. “A survey of constructive presheaf models of univalence”. ACM SIGLOG News, 5.3 (2018).

✗ Accessing the multiverse from within intensional type theory is tricky:

Given a model of sCIC and a category C in it, we have a syntactic presheaf model of CIC.
Coquand, Jaber. “A note on forcing and type theory”. Fundamenta Informaticae 100 (2010).
Jaber, Lewertowski, Pédrot, Sozeau, Tabareau. “The definitional side of the forcing”. Proceedings of LICS ’16 (2016).
Pédrot. “Russian constructivism in a prefascist theory”. Proceedings of LICS ’20 (2020).

Given a suitable lex modality, we have a syntactic sheaf model (model of modal types).
Coquand, Ruch, Sattler. “Constructive sheaf models of type theory.” Math. Struct. Comput. Sci. 31.9 (2021).
Escardó, Xu. “Sheaf models of type theory in type theory”. Unpublished (2016).
Quirin. “Lawvere–Tierney sheafification in Homotopy Type Theory”. PhD thesis (2016).

(I believe) we have syntactic sheaf models in certain special cases, when no coherence issues arise
in defining the notion of presheaves.

Note: We can use∇ even without a proper metatheoretic backing.

6 / 7

20
25
-0
6-
20

Towards topological type theory for decrypting transfinite methods in
classical mathematics

Formal metatheory



Formal metatheory
✓ There are type-theoretic multiverses, such as

the collection of all PSh(C × B), where B ranges over cube categories and C over arbitrary small
categories, and their corresponding sheaf models
Coquand. “A survey of constructive presheaf models of univalence”. ACM SIGLOG News, 5.3 (2018).

✗ Accessing the multiverse from within intensional type theory is tricky:

Given a model of sCIC and a category C in it, we have a syntactic presheaf model of CIC.
Coquand, Jaber. “A note on forcing and type theory”. Fundamenta Informaticae 100 (2010).
Jaber, Lewertowski, Pédrot, Sozeau, Tabareau. “The definitional side of the forcing”. Proceedings of LICS ’16 (2016).
Pédrot. “Russian constructivism in a prefascist theory”. Proceedings of LICS ’20 (2020).

Given a suitable lex modality, we have a syntactic sheaf model (model of modal types).
Coquand, Ruch, Sattler. “Constructive sheaf models of type theory.” Math. Struct. Comput. Sci. 31.9 (2021).
Escardó, Xu. “Sheaf models of type theory in type theory”. Unpublished (2016).
Quirin. “Lawvere–Tierney sheafification in Homotopy Type Theory”. PhD thesis (2016).

(I believe) we have syntactic sheaf models in certain special cases, when no coherence issues arise
in defining the notion of presheaves.

Note: We can use∇ even without a proper metatheoretic backing.
6 / 7

20
25
-0
6-
20

Towards topological type theory for decrypting transfinite methods in
classical mathematics
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Exciting ongoing work on split type theory by Martin Baillon, Assia Mahboubi and Pierre-Marie Pédrot!

https://msp.cis.strath.ac.uk/types2025/slides/TYPES2025-slides57.pdf


Increasing subsequences as convenient fictions

Let X be a quasi-order. Let B : ListX → Prop be a monotone predicate.
Classical blueprint

Thm. lem If X is well∞ and if every increasing sequence α : N → X has a prefix validating B,
then every sequence has a prefix validating B.

Proof. Let α : N → X be a sequence. By the lemma, there is an increasing subsequence α i0 ≤ α i1 ≤ · · · .
By assumption, this subsequence has a prefix validating B. This prefix is part of a prefix of the original
sequence α. Hence we conclude by monotonicity.

Constructive reimagination

Thm. If X is wellind and if ∇1 B [ ], then ∇B [ ].

Ó

Ó

Proof. Let α : N → X be a sequence (in an arbitrary topos). Somewhere, lem holds. There X is still well∞,
so that we have an increasing subsequence α i0 ≤ α i1 ≤ · · · . By assumption, this subsequence has a
finite prefix validating B. This prefix is part of a prefix of the original sequence α. Hence α has a prefix
validating B by monotonicity there. So somewhere there is a finite prefix validating B. Thus there actually
is a finite prefix validating B.
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Increasing subsequences as convenient fictions

On this slide ∇ is the monad described on slide 5, and∇1 is the variant where lists are only allowed to grow
in a monotonically increasing manner; so∇ is the monad for the generic sequence N → X , while∇1 is the
monad for the generic increasing sequence N → X .

The displayed multiversal proof gives a positive answer to a question posed by Stefano Berardi, Gabriele
Buriola and Peter Schuster, see this set of slides.

At the end of the day, this proof yields a concrete algorithm (see here for manually-extracted Perl code). Given
an infinite sequence, this algorithm seeks, in a certain systematic but not exhaustive manner, a sufficiently
long monotonic subsequence, making judicious use of backtracking. This search terminates, though this fact is
not obvious just by looking at the algorithm.

https://www.speicherleck.de/iblech/stuff/dickson//Dickson.html
https://www.speicherleck.de/iblech/stuff/dickson//Dickson.html
https://www.speicherleck.de/iblech/stuff/slides-abmv2024.pdf#page=16
https://www.speicherleck.de/iblech/stuff/dickson/implicational.pl


Maximal ideals as convenient fictions

Let A be a commutative ring with unit.
Thm. Let M be a surjective matrix with more rows than columns over A. Then 1 = 0 in A.

Classical proof. Assume not. Then there is a maximal ideal m. The matrix M is surjective
over A/m. Since A/m is a field, this is a contradiction to basic linear algebra.

(0) = {0}

(1) = Z

(2) (3)

(4) (6)

(5) (7) . . .

maximal among the proper ideals

• ¬(1 ∈ m)

• ¬
(
1 ∈ m+ (x)

)
⇒ x ∈ m

(8) . . .

Multiversal constructive proof. We may work somewhere where lem holds. So assume not.
Proximally, there is a maximal ideal m (

Ó

Ó). The matrix M is still surjective there, and also
over A/m. Since A/m is a field, this is a contradiction to basic linear algebra.

Unrolled constructive proof (special case,

Ó

Ó). Write M = ( xy ). By surjectivity, have u, v with
u ( xy ) = ( 10 ) and v ( xy ) = ( 01 ) .

Hence 1 = (vy)(ux) = (uy)(vx) = 0.
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Maximal ideals as convenient fictions

The displayed classical proof is quite efficient from the point of view of organizing mathematical knowledge,
as it quickly reduces the general situation of dealing with an arbitrary ring to dealing with a field. Alas, read
literally, it is hopeless ineffective.

https://iblech.github.io/constructive-maximal-ideals/index.html#§4.§4-4
https://iblech.github.io/constructive-maximal-ideals/index.html#§4.§4-4
https://iblech.github.io/constructive-maximal-ideals/index.html#§4.TestCase
https://iblech.github.io/constructive-maximal-ideals/index.html#§4.TestCase


Maximal ideals as convenient fictions

Let A be a commutative ring with unit.

Thm. Let M be a surjective matrix with more rows than columns over A. Then 1 = 0 in A.

Classical proof. Assume not. Then there is a maximal ideal m. The matrix M is surjective
over A/m. Since A/m is a field, this is a contradiction to basic linear algebra.

Multiversal constructive proof. We may work somewhere where lem holds. So assume not.
Proximally, there is a maximal ideal m (

Ó

Ó). The matrix M is still surjective there, and also
over A/m. Since A/m is a field, this is a contradiction to basic linear algebra.

Unrolled constructive proof (special case,

Ó

Ó). Write M = ( xy ). By surjectivity, have u, v with
u ( xy ) = ( 10 ) and v ( xy ) = ( 01 ) .

Hence 1 = (vy)(ux) = (uy)(vx) = 0.

7b / 7

20
25
-0
6-
20

Towards topological type theory for decrypting transfinite methods in
classical mathematics

Maximal ideals as convenient fictions

The displayed classical proof is quite efficient from the point of view of organizing mathematical knowledge,
as it quickly reduces the general situation of dealing with an arbitrary ring to dealing with a field. Alas, read
literally, it is hopeless ineffective.

By employing modal language, we can closely mimic the original proof and be fully constructive at the same
time.
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Maximal ideals as convenient fictions

The displayed classical proof is quite efficient from the point of view of organizing mathematical knowledge,
as it quickly reduces the general situation of dealing with an arbitrary ring to dealing with a field. Alas, read
literally, it is hopeless ineffective.

By employing modal language, we can closely mimic the original proof and be fully constructive at the same
time.

By unwinding all modal definitions, the modal proof can be unrolled to a fully explicit computation.
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Stabilization as convenient fiction

A commutative ring A with unit is . . .
Noetherian∞ iff for every sequence x0, x1, . . . of ring elements, there is a number n : N
such that xn, xn+1, xn+2, . . . ∈ (x0, . . . , xn−1).
NoetherianRS iff for every sequence x0, x1, . . . of ring elements, there is a number n : N
such that xn ∈ (x0, . . . , xn−1).
Noetherianind iff a certain inductively defined condition holds

[Coquand–Persson]

[Coquand–Persson].
We then have:

Noetherianind(A) ⇐⇒ NoetherianRS(A)

⇐⇒
(
lem ⇒ Noetherian∞(A)

)
⇐⇒ Noetherian∞(A).

With this observation, from their classical counterparts, we can extract constructive proofs of:
1 Hilbert’s basis theorem: If A is Noetherianind, then so is A[X ].
2 Locality: If 1 = f1 + . . .+ fn and if each ring A[f −1

i ] is Noetherianind, then so is A.
(As a consequence, A is Noetherianind iff algebraic geometry’s OSpec(A) is.)
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https://dl.acm.org/doi/10.5555/646538.696017
https://dl.acm.org/doi/10.5555/646538.696017
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Let’s play Agda, an interactive course on Agda, complementing the Agdapad.

AI Transforms Maths Research, a workshop in Augsburg.

Synthetic mathematics, a conference in Luminy.

https://lets-play-agda.quasicoherent.io/
https://agdapad.quasicoherent.io/
https://www.uni-augsburg.de/en/fakultaet/mntf/math/prof/geom/workshop-aimath/
https://conferences.cirm-math.fr/3377.html


Backup slides.
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Ingredients for forcing
To construct a forcing extension, we require:

1 a base universe V
2 a preorder L of forcing conditions in V, pictured as finite approximations
(convention: τ ≼ σ means that τ is a better finite approximation than σ)

3 a covering system governing how finite approximations evolve to better ones
(for each σ ∈ L, a set Cov(σ) ⊆ P(↓σ), with a simulation condition)

In the forcing extension V∇, there will then be a generic filter (ideal object).

For the generic surjection N↠ X

Use finite lists σ ∈ X∗ as forcing conditions, where
τ ≼ σ iff σ is an initial segment of τ , and be pre-
pared to grow σ to . . .
(a) one of {σx | x ∈ X}, to make σ more defined
(b) one of {στ | τ ∈ X∗, a ∈ στ}, for any a ∈ X , to

make σ more surjective

For the generic prime ideal of a ring A

Use f.g. ideals as forcing conditions, where
b ≼ a iff b ⊇ a, and be prepared to grow a to
. . .
(a) one of ∅, if 1 ∈ a, to make a more proper
(b) one of {a+ (x), a+ (y)}, if xy ∈ a, to

make a more prime
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For the generic prime ideal of a ring A

Use f.g. ideals as forcing conditions, where
b ≼ a iff b ⊇ a, and be prepared to grow a to
. . .
(a) one of ∅, if 1 ∈ a, to make a more proper
(b) one of {a+ (x), a+ (y)}, if xy ∈ a, to

make a more prime
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Ingredients for forcing
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The eventually monad

Let L be a forcing notion.

Let P be a monotone predicate on L (if τ ≼ σ, then Pσ ⇒ Pτ ).
For instance, in the case L = X∗:

Repeats x0 . . . xn−1 :≡ ∃i.∃j. i < j ∧ xi = xj
Good x0 . . . xn−1 :≡ ∃i. ∃j. i < j ∧ xi ≤ xj (for some preorder ≤ on X )

We then define “∇ P σ” (“P bars σ”) inductively by the following clauses:

1 If Pσ, then∇ P σ.
2 If∇ P τ for all τ ∈ R, where R is some covering of σ, then∇ P σ.

So∇ P σ expresses in a direct inductive fashion:

“No matter how σ evolves to a better approximation τ , eventually P τ will hold.”

We use quantifier-like notation: “∇(τ ≼ σ). Pτ ” means “∇ P σ”.
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Proof translations

Thm. Every iqc-proof remains correct, with at most a polynomial increase in length, if
throughout we replace

∃ ⇝ ∃cl, where ∃cl :≡ ¬¬∃,
∨ ⇝ ∨cl, where α ∨cl β :≡ ¬¬(α ∨ β),
= ⇝ =cl, where s =cl t :≡ ¬¬(s = t).

When we say: some statement “holds in V¬¬”,
we mean: its translation holds in V .

Similarly for arbitrary forcing extensions V∇, “just with∇ instead of ¬¬”.

Ex. As ¬¬(φ ∨ ¬φ) is a theorem of iqc, the law of excluded middle holds in V¬¬.

12c / 7

20
25
-0
6-
20

Towards topological type theory for decrypting transfinite methods in
classical mathematics

Basics of forcing

Proof translations



Proof translations

Thm. Every iqc-proof remains correct, with at most a polynomial increase in length, if
throughout we replace

∃ ⇝ ∃cl, where ∃cl :≡ ¬¬∃,
∨ ⇝ ∨cl, where α ∨cl β :≡ ¬¬(α ∨ β),
= ⇝ =cl, where s =cl t :≡ ¬¬(s = t).

When we say: some statement “holds in V¬¬”,
we mean: its translation holds in V .

Similarly for arbitrary forcing extensions V∇, “just with∇ instead of ¬¬”.

Ex. As ¬¬(φ ∨ ¬φ) is a theorem of iqc, the law of excluded middle holds in V¬¬.

12c / 7

20
25
-0
6-
20

Towards topological type theory for decrypting transfinite methods in
classical mathematics

Basics of forcing

Proof translations



Proof translations

Thm. Every iqc-proof remains correct, with at most a polynomial increase in length, if
throughout we replace

∃ ⇝ ∃cl, where ∃cl :≡ ¬¬∃,
∨ ⇝ ∨cl, where α ∨cl β :≡ ¬¬(α ∨ β),
= ⇝ =cl, where s =cl t :≡ ¬¬(s = t).

When we say: some statement “holds in V¬¬”,
we mean: its translation holds in V .

Similarly for arbitrary forcing extensions V∇, “just with∇ instead of ¬¬”.

Ex. As ¬¬(φ ∨ ¬φ) is a theorem of iqc, the law of excluded middle holds in V¬¬.

12c / 7

20
25
-0
6-
20

Towards topological type theory for decrypting transfinite methods in
classical mathematics

Basics of forcing

Proof translations



The ∇-translation
For bounded first-order formulas over the (large) first-order signature which has

1 one sort X for each set X in the base universe,
2 one n-ary function symbol f : X1 × · · · × Xn → Y for each map f : X1 × · · · × Xn → Y ,
3 one n-ary relation symbol R ↪→ X1 × · · · × Xn for each relation R ⊆ X1 × · · · × Xn, and
4 an additional unary relation symbol G ↪→ L (for the generic filter of L),

we recursively define:

σ ⊨ s = t iff ∇σ. JsK = JtK. σ ⊨ R(s1, . . . , sn) iff ∇σ. R(Js1K, . . . , JsnK).
σ ⊨ φ⇒ ψ iff ∀(τ ≼ σ). (τ ⊨ φ) ⇒ (τ ⊨ ψ). σ ⊨ Gτ iff ∇σ. σ ≼ JτK.
σ ⊨ ⊤ iff ⊤. σ ⊨ ⊥ iff ∇σ. ⊥
σ ⊨ φ ∧ ψ iff (σ ⊨ φ) ∧ (σ ⊨ ψ). σ ⊨ φ ∨ ψ iff ∇σ. (σ ⊨ φ) ∨ (σ ⊨ ψ).
σ ⊨ ∀(x :X). φ iff ∀(τ ≼ σ). ∀(x0 ∈ X). τ ⊨ φ[x0/x]. σ ⊨ ∃(x :X). φ iff ∇σ. ∃(x0 ∈ X). σ ⊨ φ[x0/x].

Finally, we say that φ “holds in V∇” iff for all σ ∈ L, σ ⊨ φ.

forcing notion statement about V∇ external meaning

surjection N↠ X “the gen. surj. is surjective” ∀(σ∈X∗). ∀(a∈X).∇(τ≼σ).∃(n∈N). τ [n] = a.

map N → X “the gen. sequence is good” Good | [ ].
frame of opens “every complex number has a

square root”
For every open U ⊆ X and every cont. function f : U →
C, there is an open covering U =

⋃
i Ui such that for

each index i, there is a cont. function g : Ui → C such
that g2 = f .

big Zariski “x ̸= 0 ⇒ x inv.” If the only f.p. k-algebra in which x = 0 is the zero
algebra, then x is invertible in k.

little Zariski “every f.g. vector space does
not not have a basis”

Grothendieck’s generic freeness lemma
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Outlook
Passing to and from extensions
Thm. Let φ be a bounded first-order formula not mentioning G. In each of the following situations,
we have that φ holds in V∇ iff φ holds in V :

1 L and all coverings are inhabited (proximality).
2 L contains a top element, every covering of the top element is inhabited, and φ is a coherent

implication (positivity).

The mystery of nongeometric sequents

The generic ideal of a ring is maximal:
(x ∈ a ⇒ 1 ∈ a) =⇒ 1 ∈ a+ (x).

The generic ring is a field:
(x = 0 ⇒ 1 = 0) =⇒ (∃y. xy = 1).

Traveling the multiverse . . .

lem is a switch and holds positively; being
countable is a button.

Every instance of dc holds proximally.

A geometric implication is provable iff it holds
everywhere.

. . . upwards, but always keeping ties to the base.
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More on forcing notions
Def. A forcing notion consists of a preorder L of forcing conditions, and for every σ ∈ L, a
set Cov(σ) ⊆ P(↓σ) of coverings of σ such that: If τ ≼ σ and R ∈ Cov(σ), there should be a
covering S ∈ Cov(τ) such that S ⊆ ↓R.

preorder L coverings of an element σ ∈ L filters of L

1 X∗ {σx | x ∈ X} maps N → X
2 X∗ {σx | x ∈ X}, {στ | τ ∈ X∗, a ∈ στ} for each a ∈ X surjections N↠ X
3 f.g. ideals — ideals
4 f.g. ideals {σ + (a), σ + (b)} for each ab ∈ σ, {} if 1 ∈ σ prime ideals
5 opens U such that σ =

⋃
U points

6 {⋆} {⋆ |φ} ∪ {⋆ | ¬φ} witnesses of lem

Def. A filter of a forcing notion (L,Cov) is a subset F ⊆ L such that
1 F is upward-closed: if τ ≼ σ and if τ ∈ F , then σ ∈ F ;
2 F is downward-directed: F is inhabited, and if α, β ∈ F , then there is a common refinement σ ≼ α, β such that σ ∈ F ; and
3 F splits the covering system: if σ ∈ F and R ∈ Cov(σ), then τ ∈ F for some τ ∈ R.
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