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Comprehension category

Recall:

Definition ([Jac93])
A comprehension category is a strictly commutative
diagram of functors

F C2

C
cod

such that F Ñ C is a Grothendieck fibration and F Ñ C2

is a cartesian functor.

such data gives a (weak) model of MLTT.



Example: the groupoid model

An isofibration in Gpd is

A a

B b F paq

F

i.e. the map pF1,d0q : A1 Ñ B1 ˆB0 A0 has a section.

Example ([HS98])

Isofib Gpd2

Gpd
cod cod

forms a comprehension category.
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Weak Factorisation Systems

Many examples of comprehension categories arise from
weak factorisation systems.

Definition
A weak factorisation system (wfs) on a category C is a
pair pL,Rq of classes of morphisms in C such that:

1 Every map f : X Ñ Y can be factorised as a map in
L followed by a map in R.

2 L “& R and R “ L&.

X Y

‚

f

LQ PR

A X

B Y

LQ PR
D



Examples of WFSs

Example
(injective-on-object equivalences, isofibrations) form a
weak factorisation system on Gpd.

Example
(monomorphic homotopy equivalences, Kan fibrations)
form a weak factorisation system on sSet.

... but can’t often be equipped with coherent path objects.
A fix of this was suggested by Garner in moving to the
algebraic setting.
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Type theoretic awfs

Definition ([GL23])
A type-theoretic algebraic weak factorisation system on a
category C is a pair pL,Rq of a comonad and a monad on
CÑ such that pL-Coalg,R-Algq is a wfs on C with some
extra structure and satisfying certain conditions.

Theorem ([GL23], Theorem 4.12)
Let pC,Fq be a type theoretic algebraic weak factorisation
system. Then the right adjoint splitting of the
comprehension category associated to the awfs is
equipped with strictly stable choices of Σ,Π and Id-types
i.e. it forms a model of MLTT.

The F-algebras model the dependent types.
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Cloven isofibrations

An isofibration in Gpd is

A Da1 a

B b F paq

F

i.e. the map pF1,d0q : A1 Ñ B1 ˆB0 A0 has a section.

Definition
A cloven isofibration is a pair pF , sq in which the map
s : B1 ˆB0 A0 Ñ A1 is a chosen section of pF1,d0q.
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The algebraic groupoid model

Proposition
There is a monad F : Gpd2

Ñ Gpd2 such that
F-Alg – ClovenIsofibrations.

Theorem
There is a type theoretic AWFS involving F. Hence cloven
isofibrations model MLTT.

In the type theory, pF , sq ‰ pF , tq for s ‰ t .
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Internal groupoids

Definition
A small groupoid is:

... C1 ˆC0 C1 C1 C0
m

p1

p2

p´q´1

d1

d0

i

Where C0,C1 P Set. These are the objects of a
p2,1q-category Gpd.



Internal groupoids

Definition
Let E be a category with pullbacks.
A groupoid internal to E is:

... C1 ˆC0 C1 C1 C0
m

p1

p2

p´q´1

d1

d0

i

Where C0,C1 P E.
These are the objects of a p2,1q-category GpdpEq.



Internal cloven isofibrations

Definition
An internal cloven isofibration is a pair pF , sq in which the
map s : B1 ˆB0 A0 Ñ A1 is a chosen section of
pF1,d0q : A1 Ñ B1 ˆB0 A0.



The internal algebraic groupoid model

Let E be a locally cartesian closed lextensive categories
in which the forgetful functor U : CatpEq Ñ GphpEq has a
left adjoint:

Theorem
There is a monad F : GpdpEq2 Ñ GpdpEq2 such that
F-Alg – ClovenIsofibrations. Moreover, there is a type
theoretic AWFS involving F. Hence internal cloven
isofibrations model MLTT.
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Non-examples

Non-examples: E “ Cat, CatpEq, Ab...



Examples

Locally cartesian closed lextensive categories in which
the forgetful functor U : CatpEq Ñ GphpEq has a left
adjoint:

Set

Any presheaf category rCop,Sets. Note that
GpdprCop,Setsq – rCop,Gpds.

Any Grothendieck topos ShpCq. Note
GpdpShpCqq – ShpGpdpCqq.

Any elementary topos with a natural numbers object.
Arithmetic Π-pretoposes [Mai10].
Palmgren’s CETCS [Pal12].
Asm (cf. the effective topos [Hyl88])...
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Future work

In joint work with Sam Speight:
The exact completion of Asm is the effective topos.

Bourke and Garner’s work show that E ÞÑ GpdpEq is
the p2,1q-exact completion of a 1-category [BG14].
Moreover, it forms a model of MLTT.
We can find a modest discrete opfibration classifier in
GpdpAsmq (cf. [Web07]). In the type theory, this
gives a univalent universe of modest 0-types.
Moreover, we show that modest discrete opfibrations
form a 2-category with a class of small discrete
opfibrations (cf. [JM95]).
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Future work II

Can we do this for sE :“ r∆op, Es and/or rlop, Es?
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The algebraic internal groupoid model of Martin-Löf type
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