
A canonical bidirectional typing
discipline through polarised System L

(μμ̃-calculus)

Zanzi Mihejevs, Glaive

1



Motivation

I come from Functional Programming

Algebras, algebraic effects, monads, applicatives

The dual story is often incomplete, the duals are not as common

Hot take: We are missing some key primitives of coalgebras

Programming with dual calculi is hard, so I decided to build a type-
checker

2



What do we mean by canonical?

Expressivity: linear logic - ⊗, ⊕, ⅋, &, ¬, ~, ∀, ∃
A ⊸ B := ¬A ⅋ B

A ⇽ B = A ⊗ ~B

No choices - each connective's check/synth discipline is fully
determined by its polarity + 'chirality'

The only annotations are on the shifts between check/synth

Structurally recursive - no unification, no extraneous syntax

3



What is Chirality?

Derived from the greek 'χείρ', meaning 'hand'

An object or a system is chiral if it is mirror image is not identical to
itself

Refers to a kind of 'assymetric duality'.

In our case, we will talk about the chirality between producer
terms and consumer terms

Slogan: the principal Dominant chirality is Checkable, the
auxilliary Sinister chirality is Synthesisable

4



Chirality in System L / μμ̃
Producer terms have a distinguished output:

Consumer 'co-terms' have a distinguished input:

A cut between a producer and a consumer:

5



Introducing System L

Non confluent - critical pair
6



CBV fragment - positive types

7



CBN fragment - negative types

8



Full calculus - negation

Adding polarity means that the identity function becomes not well-
kinded

9



Full-calculus - shifts

Wouldn't it be nice if these shifts coincided with bidi-shifts?

This is foreshadowing

10



How to type-check System L?

The cruicial question is how to go under binders

Pair introduction is checkable

We expect Pair elimination to be synthesisable

But it has binders

In lambda calculus, the only binding form is checkable, so going
under a binder is easy

11



Noam's reverse bidirectional typing

instead of assuming a typing context, we discover the types as we
go along

Cruicially, variables become checkable rather than synthesisable

12



Generalise to cuts between positive
types

Checking positive types:

The causal flow is right-to-left, from the sinister (pattern) chirality
to the dominant (producer) chirality

13



Flip the recipe for negative types

Checking negative types:

The causal flow is left-to-right, from the sinister (co-pattern)
chirality to the dominant (consumer) chirality

14



Negation preserves the dominant chirality

15



Shifts flip the dominant chirality

16



Conclusion

Typing algorithm for polymorphic substructural type theory

The information flow goes from the sinister to the dominant
chirality

The shifts from System L coincides with the shifts from
bidirectional typing

17



Future work

Type operators - type-level sequent calculus?

Codebruijn - recovering copying and deleting of variables

Dependent types

Subtyping and duotyping

Categorical semantics is very subtle

18


