A canonical bidirectional typing
discipline through polarised System L
(pp-calculus)

Zanzi Mihejevs, Glaive



Motivation

e | come from Functional Programming

e Algebras, algebraic effects, monads, applicatives

e The dual story is often incomplete, the duals are not as common
e Hot take: We are missing some key primitives of coalgebras

e Programming with dual calculi is hard, so | decided to build a type-
checker



What do we mean by canonical?

e Expressivity: linear logic-®,®,%, &, -, ~, V, 3
o A—-B:=-A%B
c A—~B=A® ~B

e No choices - each connective's check/synth discipline is fully
determined by its polarity + ‘chirality’

e The only annotations are on the shifts between check/synth

e Structurally recursive - no unification, no extraneous syntax



What is Chirality?

e Derived from the greek 'xeip', meaning 'hand'

e An object or asystem is chiral if it is mirror image is not identical to
itself

e Refers to a kind of 'assymetric duality’.

e In our case, we will talk about the chirality between producer
terms and consumer terms

e Slogan: the prtretpat Dominant chirality is Checkable, the
atpHiary Sinister chirality is Synthesisable



Chirality in System L / pp

e Producer terms have a distinguished output:

I't: AlA

e Consumer 'co-terms' have a distinguished input:
I'e: AF A
e A cutbetween a producer and a consumer:

'-t:A,A I''e: A A
(tle) : (I, '+ A, A7)

(Cut)



Introducing System L

Core rules:
r:AFx: Al Vi |a:AI—a:AVL
c:(I'Fa:AA) c:(Ix: AF A)
_ AR — AL
' pac: Al A ['|jzc: AFA

'Fv:A|A TV|e: AF A’
W) : (T F &, &)

Cut

e Non confluent - critical pair



CBV fragment - positive types

'Fv:AlA R 'v:B|A R
T}-LQ(U):AGBB|£\@1 I‘I—Ll(v):AEBB|A@2
c:(lz:AFA) :(T,y: BFA) oL
| il (z)e|a(y).d]: A BE A
'Fv:A|A THY:B|A c:(D,x:Ay: BFA)

T F (00): Ae B | A 2k D ilzy)d:AsBEA 2k



CBN fragment - negative types

c:('Fa:AA) ¢ (T'FpB:BA)
't p(m a.c|m[B]l.d): A& B| A

[|e:AF A ['le:BFA
['|mle]: A& BEFA ['|me]: A& BEF A

&R

&Ly

& Lo

c:(T'Fa:AB:B,A) - 'e:AFA T |e:BFA
I'E p(la,fle) : A B| A LIV | ee'] : A B AA!

XL




Full calculus - negation

['|fe:AFA c:('Fa:AA)

Fl—w(e):wA|ﬁmR F|,LL(~(CI).C):~A}—ANL

c:(Ix: AF A) B 'Fv:AlA I
Tk p(=[z]e): mA|A T|-[v]: "AF A

e Adding polarity means that the identity function becomes not well-
kinded



Full-calculus - shifts

FFo_tA_|A R c:(Tyzm : A_F A) T
I'EJl(vo): JA_ | A U all(z7).cl: JA_EF A

c:(T'Fat: AL A) - e, AL FA A
IEp(tlat]e) - TAL | A Cftles]:TALFA

e Wouldn't it be nice if these shifts coincided with bidi-shifts?

e This is foreshadowing

10



How to type-check System L?

The cruicial question is how to go under binders
Pair introduction is checkable
We expect Pair elimination to be synthesisable

But it has binders
c: (Ot ALyt : By FA) oL
U al(z"y")c] : A, @ B, F A

In lambda calculus, the only binding form is checkable, so going
under a binder is easy

11



Noam's reverse bidirectional typing

e instead of assuming a typing context, we discover the types as we
go along

F,XICAL,JCZ{:AZFB’:}C Are<= A ®A

[LAF let{(x;,x2) =eine’ = C

e Cruicially, variables become checkable rather than synthesisable

x&EArFx &< A

12



Generalise to cuts between positive
types

e Checking positive types:

check
' producer <= A|A T A° ¢ pattern - A’

(producer | pattern) : (I', TV - A, A')

(Cut)

e The causal flow is right-to-left, from the sinister (pattern) chirality
to the dominant (producer) chirality

13



Flip the recipe for negative types

e Checking negative types:

synth check

' - co-pattern gy A T'| A = consumer - A’
(co-pattern | consumer) : (I', TV - A, A’)

(Cut)

e The causal flow is left-to-right, from the sinister (co-pattern)
chirality to the dominant (consumer) chirality

14



Negation preserves the dominant chirality

Negation Left (—L)

check

check

—L

Tilde Negation Right (~ R)

check
IZE. = A FA

check
'F~(El) = ~A A

~ R

Negation Right (—R)

synth

c:(Tz™ = A, FA)

synth
TEp(=[zt].c) = —A, | A

R

Tilde Negation Left (~ L)

_ synth
c:('Fa = A_A) T

synth
T~ (@ ).c] &= ~A FA

15



Shifts flip the dominant chirality

Down Shift Right (| R) Down Shift Left (| L)
chec synth
o 554 |A e c: (To~ B A F A) I
synth check
T (v ) 2 A A Tl (z-).d <A FA
Up Shift Right (T R) Up Shift Left (1 L)
synth check
c:(TFa™ = A A) F R Fle, <« A FA F L

check synth

C'Fup(tlat].c) =14, | A i1 ler] = TALFA »



Conclusion

e Typing algorithm for polymorphic substructural type theory

e The information flow goes from the sinister to the dominant
chirality

e The shifts from System L coincides with the shifts from
bidirectional typing

17



Future work

Type operators - type-level sequent calculus?

Codebruijn - recovering copying and deleting of variables
Dependent types

Subtyping and duotyping

Categorical semantics is very subtle

18



