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Summary

Provide novel rules for commuting the later modality with quantifiers in
step-indexed logics, sound with respect to their semantics in the topos of

trees

Γ ⊢ Q : �(A → Prop)

Γ | lift (next ex⊛ Q) ⊣⊢ ∃y : �A. lift (Q ⊛ y)

Γ ⊢ Q : �(A → Prop)

Γ | lift (next all⊛ Q) ⊣⊢ ∀y : �A. lift(Q ⊛ y)

Also, everything is formalised in Rocq ;)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 2 / 23



Summary

Provide novel rules for commuting the later modality with quantifiers in
step-indexed logics, sound with respect to their semantics in the topos of

trees

Γ ⊢ Q : �(A → Prop)

Γ | lift (next ex⊛ Q) ⊣⊢ ∃y : �A. lift (Q ⊛ y)

Γ ⊢ Q : �(A → Prop)

Γ | lift (next all⊛ Q) ⊣⊢ ∀y : �A. lift(Q ⊛ y)

Also, everything is formalised in Rocq ;)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 2 / 23



Summary

Provide novel rules for commuting the later modality with quantifiers in
step-indexed logics, sound with respect to their semantics in the topos of

trees

Γ ⊢ Q : �(A → Prop)

Γ | lift (next ex⊛ Q) ⊣⊢ ∃y : �A. lift (Q ⊛ y)

Γ ⊢ Q : �(A → Prop)

Γ | lift (next all⊛ Q) ⊣⊢ ∀y : �A. lift(Q ⊛ y)

Also, everything is formalised in Rocq ;)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 2 / 23



Outline

1 Context

2 Guarded recursion

3 Step-indexed logic

4 Semantics

5 The � modality and quantifiers

6 Conclusion

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 3 / 23



Question

How do we ensure that a recursive definition is well-defined?

Example

For n ∈ N: n! = 1 · 2 · . . . · n.

Recursively:

n! =

{
1 if n = 0

n · (n − 1)! if n > 0

Example

For a ∈ NN: f ((an)n∈N) = (an + 1)n∈N.

Recursively:

f (a) = (a0 + 1, f (a ◦ s)) (where s(n) = n + 1)
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Solution 1

Structural recursion on inductive data types

Example

data N : Set where

Z : N

S : N -> N

_*_ : N -> N -> N

...

fact : N -> N

fact 0 = 1

fact (S n) = fact n * S n

Encodes well-founded definitions
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Solution 2

Structural corecursion on coinductive data types

Example

record Str : Set where

coinductive

field

hd : N

tl : Str

open S

inc : Str -> Str

inc a .hd = S (a .hd)

inc a .tl = inc (a .tl)

Encodes productive definitions
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Problem

Inductive and coinductive types have to be strictly positive in order to guarantee
termination (hence well-definedness)

What about more exotic domains? E.g.

data Exp =

Var String

| App Exp Exp

| Lam (Exp -> Exp)
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Solution 3

Key idea: step-wise approximation

Step-indexing: semantic tool for stratifying recursive definitions [AM01, Ahm04]

Approximation modality: modal framework for expressing self-referential formulas [Nak00]

Marry the two [AMRV07] and coin the term “later modality”
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Guarded type theory

New type former � (pronounced “later”)
▶ Allows us to talk about data we will only have access to in the next computation step
▶ Guards recursive occurrences in recursively defined types and terms

Applicative structure
▶ next : A → �A: shifts data into the future
▶ −⊛− : �(A → B) → �A → �B: applies a function in the future

Guarded fixed point combinator: fix : (�A → A) → A
▶ Self-reference delayed in time by next:

fix f = f (next (fix f ))

▶ We write µx : �A. t for fix (λx : �A. t)
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Motivating example: streams

Str = µX .N×�X , hence Str = N×�Str

Constructors and destructors:

− :: − : N → �Str → Str

hd : Str → N
tl : Str → �Str

Recursive operations:

zeros = µs : �Str. 0 :: s

inc = µr : �(Str → Str). λs : Str. (hd s + 1) :: (r ⊛ tl s)
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Step-indexed logic

Under the Curry-Howard correspondence, guarded recursive operations correspond to logical
connectives and rules

� type former ⇒ � modality (also pronounced “later”)
▶ �P holds now if and only if P holds at the next step

Applicative structure ⇒ modal axioms:

P ⊢ �P �(P ⊃ Q) ⊢ �P ⊃ �Q

Fixed point combinator ⇒ Löb rule:

�P ⊃ P ⊢ P

In short: to prove P, we can assume that P already holds after one computation step
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Crucial rules

P ⊢ �P
P ⊢ Q

�P ⊢ �Q
�P ⊃ P ⊢ P

�(P ∗ Q) ⊣⊢�P ∗�Q (∗ ∈ {∧,∨,⊃}) �(t =A u) ⊣⊢ next t =�A next u
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Semantics

Intuitively: sequences of approximations
▶ The n-th element describes what the object looks like if one has only n steps to reason about it
▶ n: step-index
▶ � and � shift step-indices

Two main formalisms:
▶ Ordered families of equivalences (used by Iris [JKJ+18])
▶ Topos of trees

General models of guarded recursion [BMSS12], in particular sheaves over certain complete
Heyting-algebras
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Topos of trees

S: presheaves on the ordinal ω

Objects X :

X0 X1 X2 · · ·
rX0 rX1 rX2

Notation: x |n = (rXn ◦ rXn+1 ◦ . . . ◦ rXm−1)(x)

Morphisms f : X → Y :

X0 X1 X2 · · ·

Y0 Y1 Y2 · · ·

rX0 rX1 rX2

rY0 rY1 rY2

f0 f1 f2
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Guarded recursion

� : S → S sends X to

{∗} X0 X1 · · ·! r0 r1

nextX : X → �X , (nextX )n = r�X
n

X0 X1 X2 · · ·

{∗} X0 X1 · · ·

rX0 rX1 rX2

rX0 rX1

!

!

rX0 rX1
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Example

Streams:
N N× N N× N× N · · ·π1 π1 π1

hd : Str → N, hdn(s0, . . . , sn) = s0

inc : Str → Str, incn(s0, . . . , sn) = (s0 + 1, . . . , sn + 1)
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Logic

Essentially Kripke semantics over the natural numbers

Truth of a proposition depends on the step-index n

P holds at n if it is true for n steps

If P is true for n steps, then it is also true for less than n steps

Hence: a truth value is a downward closed subset of step indices
Equivalently (classically), a conatural number
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Propositions in S

Define the object Ω as

{0, 1} {0, 1, 2} {0, 1, 2, 3} · · ·
rΩ0 rΩ1 rΩ2

where rΩn (m) = min(m, n + 1).

� : Ω → Ω is given by �n(m) = min(m + 1, n + 1)

Forcing relation: for P : X → Ω, n ∈ N, and x ∈ Xn, we define

n, x ⊩ P ⇐⇒ n ∈ Pn(x)

Crucially: n + 1, x ⊩ �P ⇐⇒ n, x |n ⊩ P
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� and quantifiers

We have

∃x : A. � P ⊢ �(∃x : A.P) �(∀x : A.P) ⊢ ∀x : A. � P

However, the other directions are not valid:

n + 1 ⊩ �(∃x : A.P) ⇐⇒ ∃a ∈ An. n, a ⊩ P

n + 1 ⊩ ∃x : A. � P ⇐⇒ ∃a ∈ An+1. n, a|n ⊩ P

There does not seem to be a general rule for commuting � with a quantifier
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Current solution
Require that A be total and inhabited

▶ Semantic condition: A0 is inhabited and all rAn are surjective

A is total and inhabited ⇐⇒ next is internally surjective:

TI (A) := ∀y : �A.∃x : A. next x = y

The following rule is valid in S [BMSS12]:

⊢ TI (A) Γ, x : A ⊢ P : Prop

Γ | �(∃x : A.P) ⊢ ∃x : A. � P

Issue: only works for total and inhabited types

Remark: following rule also valid in S:

Γ, x : A ⊢ P : Prop

Γ | TI (A) ∧�(∃x : A.P) ⊢ ∃x : A. � P
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lift

We can decompose � as � = lift ◦ next [BMSS12, CBGB16], where

lift : � Ω → Ω

lift0(∗) = 1

liftn+1(m) = m + 1

Hence, we could investigate the properties of lift
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Novel commuting rules

Γ ⊢ Q : �(A → Prop)

Γ | lift (next ex⊛ Q) ⊣⊢ ∃y : �A. lift (Q ⊛ y)

Γ ⊢ Q : �(A → Prop)

Γ | lift (next all⊛ Q) ⊣⊢ ∀y : �A. lift (Q ⊛ y)

where

ex = λP : A → Prop.∃x : A.P x

all = λP : A → Prop.∀x : A.P x

Sound in S
Imply previous rules
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Conclusion

The operation lift seems to be more fundamental and better behaved
than �

Future work:

Find appropriate rules for lift

Investigate the applicability of the rules, e.g. by formalizing a model of Iris [JKJ+18] in this
logic

Check if the new rules also hold in other models of step-indexing (e.g. Transfinite
Iris [SGG+21])

Connect lift to �̂ : �U → U in guarded dependent type theory [BGC+16]

Investigate analogues/generalisations in modal type theory [GKNB21]
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