
Commuting Rules for the Later Modality
and Quantifiers in Step-Indexed Logics

Bálint Kocsis Robbert Krebbers

Radboud University

TYPES, June 11, 2025

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 1 / 23



Summary

Provide novel rules for commuting the later modality with quantifiers in
step-indexed logics, sound with respect to their semantics in the topos of

trees

Γ ⊢ Q : �(A → Prop)

Γ | lift (next ex⊛ Q) ⊣⊢ ∃y : �A. lift (Q ⊛ y)

Γ ⊢ Q : �(A → Prop)

Γ | lift (next all⊛ Q) ⊣⊢ ∀y : �A. lift(Q ⊛ y)

Also, everything is formalised in Rocq ;)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 2 / 23



Summary

Provide novel rules for commuting the later modality with quantifiers in
step-indexed logics, sound with respect to their semantics in the topos of

trees

Γ ⊢ Q : �(A → Prop)

Γ | lift (next ex⊛ Q) ⊣⊢ ∃y : �A. lift (Q ⊛ y)

Γ ⊢ Q : �(A → Prop)

Γ | lift (next all⊛ Q) ⊣⊢ ∀y : �A. lift(Q ⊛ y)

Also, everything is formalised in Rocq ;)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 2 / 23



Summary

Provide novel rules for commuting the later modality with quantifiers in
step-indexed logics, sound with respect to their semantics in the topos of

trees

Γ ⊢ Q : �(A → Prop)

Γ | lift (next ex⊛ Q) ⊣⊢ ∃y : �A. lift (Q ⊛ y)

Γ ⊢ Q : �(A → Prop)

Γ | lift (next all⊛ Q) ⊣⊢ ∀y : �A. lift(Q ⊛ y)

Also, everything is formalised in Rocq ;)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 2 / 23



Outline

1 Context

2 Guarded recursion

3 Step-indexed logic

4 Semantics

5 The � modality and quantifiers

6 Conclusion

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 3 / 23



Question

How do we ensure that a recursive definition is well-defined?

Example

For n ∈ N: n! = 1 · 2 · . . . · n.

Recursively:

n! =

{
1 if n = 0

n · (n − 1)! if n > 0

Example

For a ∈ NN: f ((an)n∈N) = (an + 1)n∈N.

Recursively:

f (a) = (a0 + 1, f (a ◦ s)) (where s(n) = n + 1)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 4 / 23



Question

How do we ensure that a recursive definition is well-defined?

Example

For n ∈ N: n! = 1 · 2 · . . . · n.

Recursively:

n! =

{
1 if n = 0

n · (n − 1)! if n > 0

Example

For a ∈ NN: f ((an)n∈N) = (an + 1)n∈N.

Recursively:

f (a) = (a0 + 1, f (a ◦ s)) (where s(n) = n + 1)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 4 / 23



Question

How do we ensure that a recursive definition is well-defined?

Example

For n ∈ N: n! = 1 · 2 · . . . · n. Recursively:

n! =

{
1 if n = 0

n · (n − 1)! if n > 0

Example

For a ∈ NN: f ((an)n∈N) = (an + 1)n∈N.

Recursively:

f (a) = (a0 + 1, f (a ◦ s)) (where s(n) = n + 1)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 4 / 23



Question

How do we ensure that a recursive definition is well-defined?

Example

For n ∈ N: n! = 1 · 2 · . . . · n. Recursively:

n! =

{
1 if n = 0

n · (n − 1)! if n > 0

Example

For a ∈ NN: f ((an)n∈N) = (an + 1)n∈N.

Recursively:

f (a) = (a0 + 1, f (a ◦ s)) (where s(n) = n + 1)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 4 / 23



Question

How do we ensure that a recursive definition is well-defined?

Example

For n ∈ N: n! = 1 · 2 · . . . · n. Recursively:

n! =

{
1 if n = 0

n · (n − 1)! if n > 0

Example

For a ∈ NN: f ((an)n∈N) = (an + 1)n∈N. Recursively:

f (a) = (a0 + 1, f (a ◦ s)) (where s(n) = n + 1)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 4 / 23



Solution 1

Structural recursion on inductive data types

Example

data N : Set where

Z : N

S : N -> N

_*_ : N -> N -> N

...

fact : N -> N

fact 0 = 1

fact (S n) = fact n * S n

Encodes well-founded definitions

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 5 / 23



Solution 1

Structural recursion on inductive data types

Example

data N : Set where

Z : N

S : N -> N

_*_ : N -> N -> N

...

fact : N -> N

fact 0 = 1

fact (S n) = fact n * S n

Encodes well-founded definitions

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 5 / 23



Solution 1

Structural recursion on inductive data types

Example

data N : Set where

Z : N

S : N -> N

_*_ : N -> N -> N

...

fact : N -> N

fact 0 = 1

fact (S n) = fact n * S n

Encodes well-founded definitions
Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 5 / 23



Solution 2

Structural corecursion on coinductive data types

Example

record Str : Set where

coinductive

field

hd : N

tl : Str

open S

inc : Str -> Str

inc a .hd = S (a .hd)

inc a .tl = inc (a .tl)

Encodes productive definitions

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 6 / 23



Solution 2

Structural corecursion on coinductive data types

Example

record Str : Set where

coinductive

field

hd : N

tl : Str

open S

inc : Str -> Str

inc a .hd = S (a .hd)

inc a .tl = inc (a .tl)

Encodes productive definitions

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 6 / 23



Solution 2

Structural corecursion on coinductive data types

Example

record Str : Set where

coinductive

field

hd : N

tl : Str

open S

inc : Str -> Str

inc a .hd = S (a .hd)

inc a .tl = inc (a .tl)

Encodes productive definitions
Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 6 / 23



Problem

Inductive and coinductive types have to be strictly positive in order to guarantee
termination (hence well-definedness)

What about more exotic domains? E.g.

data Exp =

Var String

| App Exp Exp

| Lam (Exp -> Exp)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 7 / 23



Problem

Inductive and coinductive types have to be strictly positive in order to guarantee
termination (hence well-definedness)

What about more exotic domains? E.g.

data Exp =

Var String

| App Exp Exp

| Lam (Exp -> Exp)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 7 / 23



Solution 3

Key idea: step-wise approximation

Step-indexing: semantic tool for stratifying recursive definitions [AM01, Ahm04]

Approximation modality: modal framework for expressing self-referential formulas [Nak00]

Marry the two [AMRV07] and coin the term “later modality”

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 8 / 23



Solution 3

Key idea: step-wise approximation

Step-indexing: semantic tool for stratifying recursive definitions [AM01, Ahm04]

Approximation modality: modal framework for expressing self-referential formulas [Nak00]

Marry the two [AMRV07] and coin the term “later modality”

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 8 / 23



Solution 3

Key idea: step-wise approximation

Step-indexing: semantic tool for stratifying recursive definitions [AM01, Ahm04]

Approximation modality: modal framework for expressing self-referential formulas [Nak00]

Marry the two [AMRV07] and coin the term “later modality”

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 8 / 23



Solution 3

Key idea: step-wise approximation

Step-indexing: semantic tool for stratifying recursive definitions [AM01, Ahm04]

Approximation modality: modal framework for expressing self-referential formulas [Nak00]

Marry the two [AMRV07] and coin the term “later modality”

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 8 / 23



Guarded type theory

New type former � (pronounced “later”)
▶ Allows us to talk about data we will only have access to in the next computation step
▶ Guards recursive occurrences in recursively defined types and terms

Applicative structure
▶ next : A → �A: shifts data into the future
▶ −⊛− : �(A → B) → �A → �B: applies a function in the future

Guarded fixed point combinator: fix : (�A → A) → A
▶ Self-reference delayed in time by next:

fix f = f (next (fix f ))

▶ We write µx : �A. t for fix (λx : �A. t)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 9 / 23



Guarded type theory

New type former � (pronounced “later”)
▶ Allows us to talk about data we will only have access to in the next computation step
▶ Guards recursive occurrences in recursively defined types and terms

Applicative structure
▶ next : A → �A: shifts data into the future
▶ −⊛− : �(A → B) → �A → �B: applies a function in the future

Guarded fixed point combinator: fix : (�A → A) → A
▶ Self-reference delayed in time by next:

fix f = f (next (fix f ))

▶ We write µx : �A. t for fix (λx : �A. t)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 9 / 23



Guarded type theory

New type former � (pronounced “later”)
▶ Allows us to talk about data we will only have access to in the next computation step
▶ Guards recursive occurrences in recursively defined types and terms

Applicative structure
▶ next : A → �A: shifts data into the future
▶ −⊛− : �(A → B) → �A → �B: applies a function in the future

Guarded fixed point combinator: fix : (�A → A) → A
▶ Self-reference delayed in time by next:

fix f = f (next (fix f ))

▶ We write µx : �A. t for fix (λx : �A. t)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 9 / 23



Motivating example: streams

Str = µX .N×�X , hence Str = N×�Str

Constructors and destructors:

− :: − : N → �Str → Str

hd : Str → N
tl : Str → �Str

Recursive operations:

zeros = µs : �Str. 0 :: s

inc = µr : �(Str → Str). λs : Str. (hd s + 1) :: (r ⊛ tl s)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 10 / 23



Motivating example: streams

Str = µX .N×�X , hence Str = N×�Str

Constructors and destructors:

− :: − : N → �Str → Str

hd : Str → N
tl : Str → �Str

Recursive operations:

zeros = µs : �Str. 0 :: s

inc = µr : �(Str → Str). λs : Str. (hd s + 1) :: (r ⊛ tl s)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 10 / 23



Motivating example: streams

Str = µX .N×�X , hence Str = N×�Str

Constructors and destructors:

− :: − : N → �Str → Str

hd : Str → N
tl : Str → �Str

Recursive operations:

zeros = µs : �Str. 0 :: s

inc = µr : �(Str → Str). λs : Str. (hd s + 1) :: (r ⊛ tl s)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 10 / 23



Step-indexed logic

Under the Curry-Howard correspondence, guarded recursive operations correspond to logical
connectives and rules

� type former ⇒ � modality (also pronounced “later”)
▶ �P holds now if and only if P holds at the next step

Applicative structure ⇒ modal axioms:

P ⊢ �P �(P ⊃ Q) ⊢ �P ⊃ �Q

Fixed point combinator ⇒ Löb rule:

�P ⊃ P ⊢ P

In short: to prove P, we can assume that P already holds after one computation step

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 11 / 23



Step-indexed logic

Under the Curry-Howard correspondence, guarded recursive operations correspond to logical
connectives and rules

� type former ⇒ � modality (also pronounced “later”)
▶ �P holds now if and only if P holds at the next step

Applicative structure ⇒ modal axioms:

P ⊢ �P �(P ⊃ Q) ⊢ �P ⊃ �Q

Fixed point combinator ⇒ Löb rule:

�P ⊃ P ⊢ P

In short: to prove P, we can assume that P already holds after one computation step

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 11 / 23



Step-indexed logic

Under the Curry-Howard correspondence, guarded recursive operations correspond to logical
connectives and rules

� type former ⇒ � modality (also pronounced “later”)
▶ �P holds now if and only if P holds at the next step

Applicative structure ⇒ modal axioms:

P ⊢ �P �(P ⊃ Q) ⊢ �P ⊃ �Q

Fixed point combinator ⇒ Löb rule:

�P ⊃ P ⊢ P

In short: to prove P, we can assume that P already holds after one computation step

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 11 / 23



Step-indexed logic

Under the Curry-Howard correspondence, guarded recursive operations correspond to logical
connectives and rules

� type former ⇒ � modality (also pronounced “later”)
▶ �P holds now if and only if P holds at the next step

Applicative structure ⇒ modal axioms:

P ⊢ �P �(P ⊃ Q) ⊢ �P ⊃ �Q

Fixed point combinator ⇒ Löb rule:

�P ⊃ P ⊢ P

In short: to prove P, we can assume that P already holds after one computation step

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 11 / 23



Crucial rules

P ⊢ �P
P ⊢ Q

�P ⊢ �Q
�P ⊃ P ⊢ P

�(P ∗ Q) ⊣⊢�P ∗�Q (∗ ∈ {∧,∨,⊃}) �(t =A u) ⊣⊢ next t =�A next u

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 12 / 23



Semantics

Intuitively: sequences of approximations
▶ The n-th element describes what the object looks like if one has only n steps to reason about it
▶ n: step-index
▶ � and � shift step-indices

Two main formalisms:
▶ Ordered families of equivalences (used by Iris [JKJ+18])
▶ Topos of trees

General models of guarded recursion [BMSS12], in particular sheaves over certain complete
Heyting-algebras

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 13 / 23



Semantics

Intuitively: sequences of approximations
▶ The n-th element describes what the object looks like if one has only n steps to reason about it
▶ n: step-index
▶ � and � shift step-indices

Two main formalisms:
▶ Ordered families of equivalences (used by Iris [JKJ+18])
▶ Topos of trees

General models of guarded recursion [BMSS12], in particular sheaves over certain complete
Heyting-algebras

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 13 / 23



Semantics

Intuitively: sequences of approximations
▶ The n-th element describes what the object looks like if one has only n steps to reason about it
▶ n: step-index
▶ � and � shift step-indices

Two main formalisms:
▶ Ordered families of equivalences (used by Iris [JKJ+18])
▶ Topos of trees

General models of guarded recursion [BMSS12], in particular sheaves over certain complete
Heyting-algebras

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 13 / 23



Topos of trees

S: presheaves on the ordinal ω

Objects X :

X0 X1 X2 · · ·
rX0 rX1 rX2

Notation: x |n = (rXn ◦ rXn+1 ◦ . . . ◦ rXm−1)(x)

Morphisms f : X → Y :

X0 X1 X2 · · ·

Y0 Y1 Y2 · · ·

rX0 rX1 rX2

rY0 rY1 rY2

f0 f1 f2

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 14 / 23



Topos of trees

S: presheaves on the ordinal ω

Objects X :

X0 X1 X2 · · ·
rX0 rX1 rX2

Notation: x |n = (rXn ◦ rXn+1 ◦ . . . ◦ rXm−1)(x)

Morphisms f : X → Y :

X0 X1 X2 · · ·

Y0 Y1 Y2 · · ·

rX0 rX1 rX2

rY0 rY1 rY2

f0 f1 f2

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 14 / 23



Topos of trees

S: presheaves on the ordinal ω

Objects X :

X0 X1 X2 · · ·
rX0 rX1 rX2

Notation: x |n = (rXn ◦ rXn+1 ◦ . . . ◦ rXm−1)(x)

Morphisms f : X → Y :

X0 X1 X2 · · ·

Y0 Y1 Y2 · · ·

rX0 rX1 rX2

rY0 rY1 rY2

f0 f1 f2

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 14 / 23



Guarded recursion

� : S → S sends X to

{∗} X0 X1 · · ·! r0 r1

nextX : X → �X , (nextX )n = r�X
n

X0 X1 X2 · · ·

{∗} X0 X1 · · ·

rX0 rX1 rX2

rX0 rX1

!

!

rX0 rX1

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 15 / 23



Guarded recursion

� : S → S sends X to

{∗} X0 X1 · · ·! r0 r1

nextX : X → �X , (nextX )n = r�X
n

X0 X1 X2 · · ·

{∗} X0 X1 · · ·

rX0 rX1 rX2

rX0 rX1

!

!

rX0 rX1

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 15 / 23



Example

Streams:
N N× N N× N× N · · ·π1 π1 π1

hd : Str → N, hdn(s0, . . . , sn) = s0

inc : Str → Str, incn(s0, . . . , sn) = (s0 + 1, . . . , sn + 1)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 16 / 23



Example

Streams:
N N× N N× N× N · · ·π1 π1 π1

hd : Str → N, hdn(s0, . . . , sn) = s0

inc : Str → Str, incn(s0, . . . , sn) = (s0 + 1, . . . , sn + 1)

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 16 / 23



Logic

Essentially Kripke semantics over the natural numbers

Truth of a proposition depends on the step-index n

P holds at n if it is true for n steps

If P is true for n steps, then it is also true for less than n steps

Hence: a truth value is a downward closed subset of step indices
Equivalently (classically), a conatural number

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 17 / 23



Logic

Essentially Kripke semantics over the natural numbers

Truth of a proposition depends on the step-index n

P holds at n if it is true for n steps

If P is true for n steps, then it is also true for less than n steps

Hence: a truth value is a downward closed subset of step indices
Equivalently (classically), a conatural number

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 17 / 23



Logic

Essentially Kripke semantics over the natural numbers

Truth of a proposition depends on the step-index n

P holds at n if it is true for n steps

If P is true for n steps, then it is also true for less than n steps

Hence: a truth value is a downward closed subset of step indices
Equivalently (classically), a conatural number

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 17 / 23



Propositions in S

Define the object Ω as

{0, 1} {0, 1, 2} {0, 1, 2, 3} · · ·
rΩ0 rΩ1 rΩ2

where rΩn (m) = min(m, n + 1).

� : Ω → Ω is given by �n(m) = min(m + 1, n + 1)

Forcing relation: for P : X → Ω, n ∈ N, and x ∈ Xn, we define

n, x ⊩ P ⇐⇒ n ∈ Pn(x)

Crucially: n + 1, x ⊩ �P ⇐⇒ n, x |n ⊩ P

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 18 / 23



Propositions in S

Define the object Ω as

{0, 1} {0, 1, 2} {0, 1, 2, 3} · · ·
rΩ0 rΩ1 rΩ2

where rΩn (m) = min(m, n + 1).

� : Ω → Ω is given by �n(m) = min(m + 1, n + 1)

Forcing relation: for P : X → Ω, n ∈ N, and x ∈ Xn, we define

n, x ⊩ P ⇐⇒ n ∈ Pn(x)

Crucially: n + 1, x ⊩ �P ⇐⇒ n, x |n ⊩ P

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 18 / 23



Propositions in S

Define the object Ω as

{0, 1} {0, 1, 2} {0, 1, 2, 3} · · ·
rΩ0 rΩ1 rΩ2

where rΩn (m) = min(m, n + 1).

� : Ω → Ω is given by �n(m) = min(m + 1, n + 1)

Forcing relation: for P : X → Ω, n ∈ N, and x ∈ Xn, we define

n, x ⊩ P ⇐⇒ n ∈ Pn(x)

Crucially: n + 1, x ⊩ �P ⇐⇒ n, x |n ⊩ P

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 18 / 23



Propositions in S

Define the object Ω as

{0, 1} {0, 1, 2} {0, 1, 2, 3} · · ·
rΩ0 rΩ1 rΩ2

where rΩn (m) = min(m, n + 1).

� : Ω → Ω is given by �n(m) = min(m + 1, n + 1)

Forcing relation: for P : X → Ω, n ∈ N, and x ∈ Xn, we define

n, x ⊩ P ⇐⇒ n ∈ Pn(x)

Crucially: n + 1, x ⊩ �P ⇐⇒ n, x |n ⊩ P

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 18 / 23



� and quantifiers

We have

∃x : A. � P ⊢ �(∃x : A.P) �(∀x : A.P) ⊢ ∀x : A. � P

However, the other directions are not valid:

n + 1 ⊩ �(∃x : A.P) ⇐⇒ ∃a ∈ An. n, a ⊩ P

n + 1 ⊩ ∃x : A. � P ⇐⇒ ∃a ∈ An+1. n, a|n ⊩ P

There does not seem to be a general rule for commuting � with a quantifier

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 19 / 23



� and quantifiers

We have

∃x : A. � P ⊢ �(∃x : A.P) �(∀x : A.P) ⊢ ∀x : A. � P

However, the other directions are not valid:

n + 1 ⊩ �(∃x : A.P) ⇐⇒ ∃a ∈ An. n, a ⊩ P

n + 1 ⊩ ∃x : A. � P ⇐⇒ ∃a ∈ An+1. n, a|n ⊩ P

There does not seem to be a general rule for commuting � with a quantifier

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 19 / 23



� and quantifiers

We have

∃x : A. � P ⊢ �(∃x : A.P) �(∀x : A.P) ⊢ ∀x : A. � P

However, the other directions are not valid:

n + 1 ⊩ �(∃x : A.P) ⇐⇒ ∃a ∈ An. n, a ⊩ P

n + 1 ⊩ ∃x : A. � P ⇐⇒ ∃a ∈ An+1. n, a|n ⊩ P

There does not seem to be a general rule for commuting � with a quantifier

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 19 / 23



Current solution
Require that A be total and inhabited

▶ Semantic condition: A0 is inhabited and all rAn are surjective

A is total and inhabited ⇐⇒ next is internally surjective:

TI (A) := ∀y : �A.∃x : A. next x = y

The following rule is valid in S [BMSS12]:

⊢ TI (A) Γ, x : A ⊢ P : Prop

Γ | �(∃x : A.P) ⊢ ∃x : A. � P

Issue: only works for total and inhabited types

Remark: following rule also valid in S:

Γ, x : A ⊢ P : Prop

Γ | TI (A) ∧�(∃x : A.P) ⊢ ∃x : A. � P

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 20 / 23



Current solution
Require that A be total and inhabited

▶ Semantic condition: A0 is inhabited and all rAn are surjective

A is total and inhabited ⇐⇒ next is internally surjective:

TI (A) := ∀y : �A.∃x : A. next x = y

The following rule is valid in S [BMSS12]:

⊢ TI (A) Γ, x : A ⊢ P : Prop

Γ | �(∃x : A.P) ⊢ ∃x : A. � P

Issue: only works for total and inhabited types

Remark: following rule also valid in S:

Γ, x : A ⊢ P : Prop

Γ | TI (A) ∧�(∃x : A.P) ⊢ ∃x : A. � P

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 20 / 23



Current solution
Require that A be total and inhabited

▶ Semantic condition: A0 is inhabited and all rAn are surjective

A is total and inhabited ⇐⇒ next is internally surjective:

TI (A) := ∀y : �A.∃x : A. next x = y

The following rule is valid in S [BMSS12]:

⊢ TI (A) Γ, x : A ⊢ P : Prop

Γ | �(∃x : A.P) ⊢ ∃x : A. � P

Issue: only works for total and inhabited types

Remark: following rule also valid in S:

Γ, x : A ⊢ P : Prop

Γ | TI (A) ∧�(∃x : A.P) ⊢ ∃x : A. � P

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 20 / 23



Current solution
Require that A be total and inhabited

▶ Semantic condition: A0 is inhabited and all rAn are surjective

A is total and inhabited ⇐⇒ next is internally surjective:

TI (A) := ∀y : �A.∃x : A. next x = y

The following rule is valid in S [BMSS12]:

⊢ TI (A) Γ, x : A ⊢ P : Prop

Γ | �(∃x : A.P) ⊢ ∃x : A. � P

Issue: only works for total and inhabited types

Remark: following rule also valid in S:

Γ, x : A ⊢ P : Prop

Γ | TI (A) ∧�(∃x : A.P) ⊢ ∃x : A. � P

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 20 / 23



Current solution
Require that A be total and inhabited

▶ Semantic condition: A0 is inhabited and all rAn are surjective

A is total and inhabited ⇐⇒ next is internally surjective:

TI (A) := ∀y : �A.∃x : A. next x = y

The following rule is valid in S [BMSS12]:

⊢ TI (A) Γ, x : A ⊢ P : Prop

Γ | �(∃x : A.P) ⊢ ∃x : A. � P

Issue: only works for total and inhabited types

Remark: following rule also valid in S:

Γ, x : A ⊢ P : Prop

Γ | TI (A) ∧�(∃x : A.P) ⊢ ∃x : A. � P

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 20 / 23



lift

We can decompose � as � = lift ◦ next [BMSS12, CBGB16], where

lift : � Ω → Ω

lift0(∗) = 1

liftn+1(m) = m + 1

Hence, we could investigate the properties of lift

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 21 / 23



lift

We can decompose � as � = lift ◦ next [BMSS12, CBGB16], where

lift : � Ω → Ω

lift0(∗) = 1

liftn+1(m) = m + 1

Hence, we could investigate the properties of lift

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 21 / 23



Novel commuting rules

Γ ⊢ Q : �(A → Prop)

Γ | lift (next ex⊛ Q) ⊣⊢ ∃y : �A. lift (Q ⊛ y)

Γ ⊢ Q : �(A → Prop)

Γ | lift (next all⊛ Q) ⊣⊢ ∀y : �A. lift (Q ⊛ y)

where

ex = λP : A → Prop.∃x : A.P x

all = λP : A → Prop.∀x : A.P x

Sound in S
Imply previous rules

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 22 / 23



Novel commuting rules

Γ ⊢ Q : �(A → Prop)

Γ | lift (next ex⊛ Q) ⊣⊢ ∃y : �A. lift (Q ⊛ y)

Γ ⊢ Q : �(A → Prop)

Γ | lift (next all⊛ Q) ⊣⊢ ∀y : �A. lift (Q ⊛ y)

where

ex = λP : A → Prop.∃x : A.P x

all = λP : A → Prop.∀x : A.P x

Sound in S
Imply previous rules

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 22 / 23



Conclusion

The operation lift seems to be more fundamental and better behaved
than �

Future work:

Find appropriate rules for lift

Investigate the applicability of the rules, e.g. by formalizing a model of Iris [JKJ+18] in this
logic

Check if the new rules also hold in other models of step-indexing (e.g. Transfinite
Iris [SGG+21])

Connect lift to �̂ : �U → U in guarded dependent type theory [BGC+16]

Investigate analogues/generalisations in modal type theory [GKNB21]

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 23 / 23



Conclusion

The operation lift seems to be more fundamental and better behaved
than �

Future work:

Find appropriate rules for lift

Investigate the applicability of the rules, e.g. by formalizing a model of Iris [JKJ+18] in this
logic

Check if the new rules also hold in other models of step-indexing (e.g. Transfinite
Iris [SGG+21])

Connect lift to �̂ : �U → U in guarded dependent type theory [BGC+16]

Investigate analogues/generalisations in modal type theory [GKNB21]

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 23 / 23



Conclusion

The operation lift seems to be more fundamental and better behaved
than �

Future work:

Find appropriate rules for lift

Investigate the applicability of the rules, e.g. by formalizing a model of Iris [JKJ+18] in this
logic

Check if the new rules also hold in other models of step-indexing (e.g. Transfinite
Iris [SGG+21])

Connect lift to �̂ : �U → U in guarded dependent type theory [BGC+16]

Investigate analogues/generalisations in modal type theory [GKNB21]

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 23 / 23



Conclusion

The operation lift seems to be more fundamental and better behaved
than �

Future work:

Find appropriate rules for lift

Investigate the applicability of the rules, e.g. by formalizing a model of Iris [JKJ+18] in this
logic

Check if the new rules also hold in other models of step-indexing (e.g. Transfinite
Iris [SGG+21])

Connect lift to �̂ : �U → U in guarded dependent type theory [BGC+16]

Investigate analogues/generalisations in modal type theory [GKNB21]

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 23 / 23



Conclusion

The operation lift seems to be more fundamental and better behaved
than �

Future work:

Find appropriate rules for lift

Investigate the applicability of the rules, e.g. by formalizing a model of Iris [JKJ+18] in this
logic

Check if the new rules also hold in other models of step-indexing (e.g. Transfinite
Iris [SGG+21])

Connect lift to �̂ : �U → U in guarded dependent type theory [BGC+16]

Investigate analogues/generalisations in modal type theory [GKNB21]

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 23 / 23



Conclusion

The operation lift seems to be more fundamental and better behaved
than �

Future work:

Find appropriate rules for lift

Investigate the applicability of the rules, e.g. by formalizing a model of Iris [JKJ+18] in this
logic

Check if the new rules also hold in other models of step-indexing (e.g. Transfinite
Iris [SGG+21])

Connect lift to �̂ : �U → U in guarded dependent type theory [BGC+16]

Investigate analogues/generalisations in modal type theory [GKNB21]

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 23 / 23



References I

Amal J. Ahmed.
Semantics of types for mutable state.
PhD thesis, Princeton University, 2004.

Andrew W. Appel and David A. McAllester.
An indexed model of recursive types for foundational proof-carrying code.
ACM Trans. Program. Lang. Syst., 23(5):657–683, 2001.

Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon.
A very modal model of a modern, major, general type system.
In POPL, pages 109–122, 2007.

Ales Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg, and Lars
Birkedal.
Guarded dependent type theory with coinductive types.
In FoSSaCS, volume 9634 of LNCS, pages 20–35, 2016.

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 23 / 23



References II

Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring.
First steps in synthetic guarded domain theory: step-indexing in the topos of trees.
Log. Methods Comput. Sci., 8(4), 2012.

Ranald Clouston, Ales Bizjak, Hans Bugge Grathwohl, and Lars Birkedal.
The guarded lambda-calculus: Programming and reasoning with guarded recursion for
coinductive types.
Log. Methods Comput. Sci., 12(3), 2016.

Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal.
Multimodal dependent type theory.
Log. Methods Comput. Sci., 17(3), 2021.

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 23 / 23



References III

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek
Dreyer.
Iris from the ground up: A modular foundation for higher-order concurrent separation logic.
J. Funct. Program., 28:e20, 2018.

Hiroshi Nakano.
A modality for recursion.
In LICS, pages 255–266, 2000.

Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek
Dreyer, and Lars Birkedal.
Transfinite Iris: Resolving an existential dilemma of step-indexed separation logic.
In PLDI, pages 80–95, 2021.

Kocsis, Krebbers (Radboud University) Commuting Later with Quantifiers TYPES, June 11, 2025 23 / 23


	Context
	Guarded recursion
	Step-indexed logic
	Semantics
	The later modality and quantifiers
	Conclusion

