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Quotient Inductive Types (QITs)
Inductive Types allow the declaration of generators:

Inductive List (𝐴 : Type) : Type :=

InductiveMSet (𝐴 : Type) : Type :=

| [] : List 𝐴

| [] : MSet 𝐴

| _ :: _ (𝑥 : 𝐴) (𝑚 : List 𝐴) : List 𝐴

| _ :: _ (𝑥 : 𝐴) (𝑚 : MSet 𝐴) : MSet 𝐴

| MSet= (𝑥 𝑦 : 𝐴) (𝑚 : MSet 𝐴) : (𝑥 :: 𝑦 ::𝑚) = (𝑦 :: 𝑥 ::𝑚)

Implicitly an hSet (in this talk, I only consider theories with UIP).

Functions eliminating a QIT must respect equality:
Fixpoint sum (𝑙 : MSet Nat) : Nat :=
match 𝑙 with

| [] → 0 | 𝑥 ::𝑚 → 𝑥 + (sum𝑚)
| MSet= 𝑥 𝑦 𝑚 → (. . . ) : (𝑥 + 𝑦 + sum𝑚) = (𝑦 + 𝑥 + sum𝑚)
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Quotient Inductive Types (QITs)
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Observational Type Theory (OTT) to the rescue
Problem In ITT (Coq, Agda, Lean), equality axioms of QIT can block computation:

(match (MSet= 𝑥 𝑦 𝑚) with | refl → 0) : Nat

In Altenkirch & McBride’s Observational Type Theory (OTT), equality is instead
eliminated using a cast operator:

𝐴, 𝐵 : Type 𝑝 : 𝐴 =Type 𝐵 𝑎 : 𝐴

cast𝐴{𝐵
𝑝 (𝑎) : 𝐵

Crucial property of OTT Computation rules for cast never look inside eq. proofs!

cast(𝐴×𝐵){(𝐴′×𝐵′)
𝑝 𝑡 −→ ⟨cast𝐴{𝐴′

𝑝.1 (𝜋1𝑡), cast𝐵{𝐵′
𝑝.2 (𝜋2𝑡)⟩

Thus, OTT accommodates desirable equality axioms (funext, propext, Q types)
without blocking computation.
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This work

We report on a WIP metatheoretic justification of (non-indexed) QITs in OTT,
with dependent eliminators that compute definitionally.

The plan

Study metatheory of OTT + QIT scheme.

Construct QITs from inductive types and Q (quotient types).
Extend OTT with Fiore et al’s QW Types.
Show that all QITs can be constructed from QW types in OTT.

Justification for extending Observational Rocq with a primitive scheme for QITs.
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Constructing QITs from QW in OTT
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Fiore et al.’s QW Types
Sig = record {Op : Type; Ar : Op → Type}

Inductive QW (Σ : Sig) (Γ : Type) : Type :=
| var (𝑥 : Γ) : QW Σ Γ

| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ Γ) : QW Σ Γ

EqTh Σ = record {E : Type; Ctx : E → Type; lhs, rhs : (𝑒 : E) → QW Σ (Ctx 𝑒)}

Inductive QW (Σ : Sig) (E : EqTh Σ) : Type :=
| op (𝑐 : Σ.Op) (𝑓 : Σ.Ar 𝑐 → QW Σ E) : QW Σ E
| eq (𝑒 : E .E) (𝛾 : E .Ctx 𝑒 → QW Σ E) : (E .lhs 𝑒)⟨𝛾⟩ = (E .rhs 𝑒)⟨𝛾⟩

where "substitution" func. _⟨_⟩ : QW Σ Γ → (Γ → QW Σ E) → QW Σ E defined by
(var 𝑥)⟨𝛾⟩ := 𝛾 𝑥 (op 𝑐 𝑓 )⟨𝛾⟩ := op 𝑐 (𝜆𝑥 .(𝑓 𝑥)⟨𝛾⟩)
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Our finitary universal QIT (see infinitary one in the github repo)
Sig = record {Op : Type; Ar : Op → Nat}

Inductive Tm (Σ : Sig) (Γ : Type) : Type :=
| var (𝑥 : Γ) : Tm Σ Γ

| op (𝑐 : Σ.Op) (t : Vec (Tm Σ Γ) (Σ.Ar 𝑐)) : Tm Σ Γ

EqTh Σ = record {E : Type; Ctx : E → Type; lhs, rhs : (𝑒 : E) → Tm Σ (Ctx 𝑒)}

Inductive Tm (Σ : Sig) (E : EqTh Σ) : Type :=
| op (𝑐 : Σ.Op) (t : Vec (Tm Σ E) (Σ.Ar 𝑐)) : Tm Σ E
| eq (𝑒 : E .E) (𝛾 : E .Ctx 𝑒 → Tm Σ E) : (E .lhs 𝑒)⟨𝛾⟩ = (E .rhs 𝑒)⟨𝛾⟩

where "substitution" func. _⟨_⟩ : Tm Σ Γ → (Γ → Tm Σ E) → Tm Σ E defined by
(var 𝑥)⟨𝛾⟩ := 𝛾 𝑥 (op 𝑐 [𝑡1, . . . , 𝑡𝑘 ])⟨𝛾⟩ := op 𝑐 [𝑡1⟨𝛾⟩, . . . , 𝑡𝑘 ⟨𝛾⟩]
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Constructing QITs from QW in OTT

QIT scheme−−−−−−−−−→
B

Tm−−−−−−−−−→
A

QW

Construction A ( ) In OTT (with cast𝐴{𝐴
𝑝 𝑡 ≡ 𝑡 ) we can construct Tm from QW.

Proof (tedious) Involves switching between first- and higher-order representa-
tion of branching.

Construction B (WIP)Non-indexed infinitary QITs can be constructed from Tm.

Proof Not yet written, but examples suggest it is direct (see github in abstract).
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Example: MSet
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Conclusion
Aconstruction of infinitary non-indexedQITswith definitional 𝛽-rules inOTT+QW.

Next steps Establish the metatheory of OTT+QW:

1. Normalization and decidability of conversion:
Logical relations, or by simulation with OTT+W?

2. Consistency: Adapting set-theoretic model of Pujet and Tabareau.

A restricted form of canonicity for the constructed QITs should follow.

Future work

• Add primitive scheme of QITs to observational version of Rocq.
• Explore more complex classes of types (indexed QITs and QIITs).

Thank you for your attention!
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