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Plan

We will:

1 Introduce the µ-calculus, and its Fischer-Ladner closure.

2 Sketch our (now complete!) formalised proof of the closure’s finiteness.

3 Discuss the presentation of rational cotrees as syntax with binding, its role in the proof,
and future plans in this direction.

4 Aim to keep it high-level and skip the gory details!
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The Modal µ-Calculus

Syntax: For all propositional atoms a ∈ At and variable names x ∈ Var:

φ := a | ¬a | x | φ ∧ φ | φ ∨ φ | □φ | ♢φ | µx .φ | νx .φ

Notes:

The fixpoint operators µ and ν are variable binders.

The syntax is strictly positive — this matters when giving semantics to fixpoint formulas.

Semantics:

Kripke semantics, where µ and ν let us reason about unbounded/infinite behaviour.

Satisfiability and model checking are decidable.

The µ-calculus subsumes temporal and dynamic logics such as LTL, CTL*, and PDL.
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Fixpoint Unfolding

At the heart of the µ-calculus is the semantic equivalence:

ηx . φ ≡ φ[x := ηx .φ]

We call φ[x := ηx .φ] the unfolding of ηx .φ.

For example: let E (p) := µx . p ∨ ♢x . Then:

E (p)

≡ p ∨ ♢(E (p))

≡ p ∨ ♢(p ∨ ♢(E (p)))

≡ . . .
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The Closure

Definition

The closure of a formula φ is the minimal set which contains φ, and is closed under taking
unfoldings of fixpoint formulas, and direct subformulas of non-fixpoint formulas.

In other words, it is the minimal set C satisfying:

φ ∈ C

⃝φ ∈ C ⇒ φ ∈ C , where ⃝ ∈ {□,♢}
φ ⋆ ψ ∈ C ⇒ φ ∈ C and ψ ∈ C , where ⋆ ∈ {∧,∨}
ηx .φ ∈ C ⇒ φ[x := µx .φ] ∈ C , where η ∈ {µ, ν}
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Finiteness of the Closure (1)

Theorem

For all φ, the closure of φ is finite. (Kozen, 1983)

Proof Sketch (Kozen):

1 Define the expansion of a formula as the sequential instantiation of all its free variables.

2 Define an alternative, structurally inductive procedure for computing the closure via the
expansion map.

3 Prove the alternative definition correct by induction.

Not so simple in a formal setting!

S. Watters (University of Strathclyde) Correct-by-Construction µ-Calculus 9th June 2025 6 / 12



Finiteness of the Closure (2)

Proof Sketch (Our Approach in Agda):

1 Implement the closure coinductively as a non-wellfounded cotree, via the standard
definition. (Trivially correct).

2 Implement the alternative definition of the closure as an inductive syntax-with-binding
representation of a rational cotree (a “tree with back-edges”). (Finite by construction).

3 Define the “unfolding” of such a tree-with-back-edges to a cotree.

4 Prove the coinductive definition closure bisimilar to the unfolding of the inductive
approximation.

5 Prove that we can transport the correctness proofs across the bisimulation, to show that
the finite-by-construction algorithm does in fact compute the closure.
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Non-Wellfounded Cotrees

mutual
record ∞NWFTree (X : Set) : Set where
coinductive
field
head : X
subtree : NWFTree X

data NWFTree (X : Set) : Set where
leaf : NWFTree X
node1 : ∞NWFTree X → NWFTree X
node2 : ∞NWFTree X → ∞NWFTree X → NWFTree X
nodeη : ∞NWFTree X → NWFTree X
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Rational Trees
Key Insight: Variables are pointers to their binders! (Ghani, Hamana, Uustalu & Vene, 2006).

mutual
data RTree (X : Set) (n : N) : Set where
step : (x : X ) → (t : RTree-step X n) → RTree X n
var : (x : Fin n) → RTree X n

data RTree-step (X : Set) (n : N) : Set where
leaf : RTree-step X n
node1 : RTree X n → RTree-step X n
node2 : RTree X n → RTree X n → RTree-step X n
nodeη : RTree X (suc n) → RTree-step X n

data Scope (X : Set) : N → Set where
[] : Scope X zero
:: : ∀ {n} → (t : RTree X n) → {{ : NonVar t}}

→ (Γ 0 : Scope X n) → Scope X (suc n)
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Unfolding Trees

head : ∀ {X n} → (Γ : Scope X n) → RTree X n → X
head Γ (step x t) = x
head (t :: Γ ) (var zero) = head Γ t
head (t :: Γ ) (var (suc x)) = head Γ (var x)

mutual
unfold : ∀ {X n} → (Γ : Scope X n) → RTree X n → ∞NWFTree X
unfold Γ t .∞NWFTree.head = head Γ t
unfold Γ t .∞NWFTree.subtree = unfold-subtree Γ t

unfold-subtree : ∀ {X n} → (Γ : Scope X n) → RTree X n → NWFTree X
unfold-subtree Γ (step x leaf) = leaf
unfold-subtree Γ (step x (node1 t)) = node1 (unfold Γ t)
unfold-subtree Γ (step x (node2 tl tr)) = node2 (unfold Γ tl) (unfold Γ tr)
unfold-subtree Γ (step x (nodeη t)) = nodeη (unfold ((step x (nodeη t)) :: Γ ) t)
unfold-subtree (t :: Γ ) (var zero) = unfold-subtree Γ t
unfold-subtree (t :: Γ ) (var (suc x)) = unfold-subtree Γ (var x)
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Progress

Theorem

The direct coinductive definition of the closure is bisimilar to the unfolding of the inductive
syntax-with-binding definition.

Theorem

Let T be the tree with back-edges produced by the inductive closure algorithm applied to φ.
Then for all formulas ψ, there is a path to ψ in T iff there is a path to ψ in the closure of ϕ.
That is, T really is the closure of φ.

To-do/future work:

Tighten the size bounds.

What’s the general, abstract story about this presentation of rational codata? (Rational
fixpoint of containers??)
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Thanks!

References:

Results on the Propositional µ-Calculus. Kozen, 1983.

Representing Cyclic Structures as Nested Datatypes. Ghani, Hamana, Uustalu & Vene,
2006.

S. Watters (University of Strathclyde) Correct-by-Construction µ-Calculus 9th June 2025 12 / 12


