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Plan

We will:

© Introduce the p-calculus, and its Fischer-Ladner closure.
@ Sketch our (now complete!) formalised proof of the closure’s finiteness.

© Discuss the presentation of rational cotrees as syntax with binding, its role in the proof,
and future plans in this direction.

@ Aim to keep it high-level and skip the gory details!
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The Modal pu-Calculus

Syntax: For all propositional atoms a € At and variable names x € Var:
p=al|-alx[eneleVve|Oe| Op|pxe|vxy
Notes:

@ The fixpoint operators p and v are variable binders.

@ The syntax is strictly positive — this matters when giving semantics to fixpoint formulas.
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The Modal pu-Calculus

Syntax: For all propositional atoms a € At and variable names x € Var:

pi=almalx|oAp|eVe |Op | Qp | uxe | vx.e

Notes:
@ The fixpoint operators 1 and v are variable binders.

@ The syntax is strictly positive — this matters when giving semantics to fixpoint formulas.

Semantics:
e Kripke semantics, where 1 and v let us reason about unbounded/infinite behaviour.

@ Satisfiability and model checking are decidable.

@ The p-calculus subsumes temporal and dynamic logics such as LTL, CTL*, and PDL.
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Fixpoint Unfolding
At the heart of the u-calculus is the semantic equivalence:

nx. ¢ = p[x = nx.¢]
We call p[x := nx.¢] the unfolding of nx.¢.

For example: let E(p) := pux. pV Ox. Then:
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Fixpoint Unfolding

At the heart of the u-calculus is the semantic equivalence:

nx. ¢ = p[x = nx.¢]

We call p[x := nx.¢] the unfolding of nx.¢.
For example: let E(p) := pux. pV Ox. Then:

E(p)
=pV O(E(p))
= bV 0(p v O(E(p)))
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The Closure

Definition

The closure of a formula ¢ is the minimal set which contains ¢, and is closed under taking
unfoldings of fixpoint formulas, and direct subformulas of non-fixpoint formulas.

In other words, it is the minimal set C satisfying:

peC
OpeC=peC, where O €{0,0}
pxpe C= pe Candype C, where x € {A,V}
nx.p € C = ¢[x := ux.¢| € C, where n € {u,v}
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Finiteness of the Closure (1)

Theorem
For all ¢, the closure of ¢ is finite. (Kozen, 1983) J

Proof Sketch (Kozen):

@ Define the expansion of a formula as the sequential instantiation of all its free variables.

@ Define an alternative, structurally inductive procedure for computing the closure via the
expansion map.

© Prove the alternative definition correct by induction.
Not so simple in a formal setting!

S. Watters (University of Strathclyde) Correct-by-Construction p-Calculus 9th June 2025 6/12



Finiteness of the Closure (2)

Proof Sketch (Our Approach in Agda):

@ Implement the closure coinductively as a non-wellfounded cotree, via the standard
definition. (Trivially correct).
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Finiteness of the Closure (2)

Proof Sketch (Our Approach in Agda):

@ Implement the closure coinductively as a non-wellfounded cotree, via the standard
definition. (Trivially correct).

@ Implement the alternative definition of the closure as an inductive syntax-with-binding
representation of a rational cotree (a “tree with back-edges”). (Finite by construction).

Define the “unfolding” of such a tree-with-back-edges to a cotree.

Prove the coinductive definition closure bisimilar to the unfolding of the inductive
approximation.

© Prove that we can transport the correctness proofs across the bisimulation, to show that
the finite-by-construction algorithm does in fact compute the closure.
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Non-Wellfounded Cotrees

mutual
record coNWFTree (X : Set) : Set where
coinductive
field
head : X
subtree : NWFTree X

data NWFTree (X : Set) : Set where
leaf : NWFTree X
nodel : coNWFTree X — NWFTree X
node2 : coNWFTree X — coNWFTree X — NWFTree X
noden : coNWFTree X — NWFTree X
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Rational Trees
Key Insight: Variables are pointers to their binders! (Ghani, Hamana, Uustalu & Vene, 2006).

mutual
data RTree (X : Set) (n: N) : Set where
step : (x: X) — (t: RTree-step X n) — RTree X n
var : (x : Fin n) — RTree X n

data RTree-step (X : Set) (n: N) : Set where
leaf : RTree-step X n
nodel : RTree X n — RTree-step X n
node2 : RTree X n — RTree X n — RTree-step X n
noden : RTree X (suc n) — RTree-step X n

data Scope (X : Set) : N — Set where
[] : Scope X zero
ooV {n} — (t: RTree X n) — {{-: NonVar t}}
— (I'y : Scope X n) — Scope X (suc n)
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Unfolding Trees

head : V {X n} — (I : Scope X n) — RTree X n — X
head I' (step x t) =x

head (t :: I') (var zero) = head I' t

head (t =: I') (var (suc x)) = head I" (var x)

mutual
unfold : V {X n} — (I" : Scope X n) — RTree X n — coNWFTree X
unfold I' t .ooNWFTree.head = head I' t
unfold I'" t .coNWFTree.subtree = unfold-subtree I t

unfold-subtree : V {X n} — (I" : Scope X n) — RTree X n — NWFTree X
unfold-subtree I (step x leaf) = leaf

unfold-subtree I" (step x (nodel t)) = nodel (unfold I t)

unfold-subtree I" (step x (node2 t/ tr)) = node2 (unfold I" t/) (unfold I" tr)
unfold-subtree I" (step x (noden t)) = noden (unfold ((step x (noden t)) = I') t)
unfold-subtree (t :: I') (var zero) = unfold-subtree I" t

unfold-subtree (t :: I') (var (suc x)) = unfold-subtree I" (var x)
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Progress
Theorem

The direct coinductive definition of the closure is bisimilar to the unfolding of the inductive
syntax-with-binding definition.

Theorem

Let T be the tree with back-edges produced by the inductive closure algorithm applied to .

Then for all formulas 1), there is a path to 1 in T iff there is a path to v in the closure of ¢.
That is, T really is the closure of .

To-do/future work:
@ Tighten the size bounds.

e What's the general, abstract story about this presentation of rational codata? (Rational
fixpoint of containers??)
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Thanks!
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