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Motivation for simplicial type theory (STT)

• Last year at TYPES: Motivation for simplicial type theory via circumventing the
coherence problem: Formalize theory of (∞, 1)-categories in HoTT/UF.
• This year, directed type theory is in the air!
• But directed type theory is also hard.
• Simplicial type theory offers you a bargain:

You can do directed type theory today
in ordinary1 type theory,

for the small price of proving a few simple propositions!

1T&Cs apply, some modalities may creep in



Basics of Simplicial Type theory

Riehl–Shulman [RS17] introduced simplicial type theory. The
idea is to interpret (homotopy) type theory in simplicial
objects sE of a model of (homotopy) type theory E . Here we
have the simplices ∆n, generated from an interval type I
(totally ordered with 0 ̸= 1).

Using I, we get the type of arrows in any type, X I, and we
get functoriality for free by composition: I→ X → Y .

Definition X is Segal if X∆2 → XΛ2
1 is an equivalence.

Definition A Segal type X is Rezk if XE → X is an
equivalence, for E the “walking equivalence”.

Definition Functions f : C → D and g : D → C are adjoint
when equipped with ι :

∏
c,d hom(f (c), d) ≃ hom(c, g(d)).

Λ2
1 ↪→ ∆2

E



Further developments in simplicial type theory

• Fibered category theory [BW23]
• (co)limits and exponentiable functors, Bardomiano Martínez [Bar22; Bar24]
• Prototype proof assistant Rzk with formalization of the fibrational Yoneda

lemma [Kud23; KRW04]
• Directed univalent universe of spaces via LOPS construction [Lic+18]; bicubical

model by Licata–Weaver [WL20; Wea24], triangulated type theory [GWB24], with
duality axiom [Ble23; Wil25] and cohesion-style axioms [MR23] – directed
structure identity principle, TYPES 2024
• Yoneda lemma via twisted arrow modality, Kan extensions, and Quillen’s

Theorem A [GWB25] – LICS 2025
• Today: Decomposition of cocompleteness, applications to synthetic stable

homotopy theory



Sifted colimits

Definition A crisp category C is sifted if lim−→C : SC → S preserves finite products.

Lemma A crisp category C is sifted if and only if for all n : Nat the map C → Cn is
right cofinal2.

The proof goes via Quillen’s Theorem A: A functor f :♭ C → D is right cofinal iff
LI(Cd/) is contractible iff lim−→D X → lim−→D X ◦ f is an equivalence for all X :♭ D → S.

Theorem If C has finite coproducts and sifted colimits, then it is cocomplete.

Proposition ⟨o | ∆⟩ is sifted.

2Ie, left orthogonal to right fibrations; aka final, cofinal, and left cofinal – it’s a mess.



Filtered colimits

Definition The finite categories are those generated by pushouts starting from 0, 1,
and I.

Definition A crisp category C is filtered if lim−→ : SC → S preserves finite limits.

It suffices to preserve pullbacks and the terminal object.

Definition A crisp category C is weakly filtered if C → CX is right cofinal for all finite
X .

It’s easy to see that filtered categories are weakly filtered. The converse is due to
Sattler and Wärn [SW25], whose foundation-agnostic argument directly translates to
STT.

Theorem If C has finite and filtered colimits, then it is cocomplete.



Stable homotopy theory

Stable homotopy theory concerns phenomena in the limit of suspending sufficiently
often, turning types into symmetric ∞-groups (recall Freudenthal suspension theorem).

Definition The category of spectra is Sp = lim←−(S⋆ ← S⋆ ← . . . ).

Lemma Sp is closed under finite limits and filtered colimits.

Following an argument of Cnossen [Cno25] we get:

Lemma Ω : Sp→ Sp is an equivalence.

It’s clear that shifting down is an equivalence, but it’s not immediate that Ω agrees
with this. But that’s easier when looking at the even numbers (right cofinal in Nat)!

Lemma Sp is finitely cocomplete and pushout squares and pullback squares coincide.

Corollary Sp is cocomplete.



Smash product of spectra

Ordinary homology H(−; R) is now definable as (1 7→ HR)! – the unique cocontinuous
functor S → Sp that sends 1 to HR.

Theorem The family of functors Hi : S → Ab defined by Hi(X ) = πi(H(X ; R))
satisfies the Eilenberg-Steenrod axioms.

Directed univalence allows us to define the smash product as a functor
− ∧− : S∗ × S∗ → S∗ and transfer results from the HoTT definition, like
associativity Ljungström [Lju24].

Definition If X , Y : Sp, we define X ⊗ Y = lim−→i ,j:Nat Ωi+jΣ∞(Xi ∧ Yj).

This uses directed univalence to establish functoriality.



Some higher algebra

We can begin to play with some higher algebra using the idea of animation, a term due
to Dustin Clausen [ČS24]:

For a cocomplete 1-category C generated under colimits by its compact projectives
C sfp, e.g.,
• Set generated by finite sets,
• Group generated by free groups on finite generating sets,
• Ab generated by f.g. free abelian groups,
• . . .

define its animation Ani(C) to be the free sifted colimit completion of C sfp.

Example Ani(Ab) is a possible definition of the category of connective HZ-modules.



Next steps for simplicial type theory

• Straightening–unstraightening for the universe of categories (the (∞, 1)-category
of (∞, 1)-categories).
Unlocks many further constructions:
• Monads, operads, (symmetric) monoidal categories, (∞, n)-categories, . . .

• (Sp,⊗,S) as a symmetric monoidal category (or better, the monoidal unit in the
symmetric monoidal category of presentable stable categories)
• Higher topos theory
• Metatheory of type theory internally in STT
• Interpretations of ((∞, 1)-localic) directed type theories
• Computational version, metatheory of of STT
• More formalization
• . . .
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