Mechanizing Logical Relations

Josselin Poiret

Gallinette team
Nantes Université, Ecole Centrale Nantes, CNRS, INRIA, LS2N, UMR 6004,
F-44000 Nantes, France

June 9, 2025

1/19

Mechanization projects

Acpa logrel-mltt by Abel, Ohman, and Vezzosi;

Roca logrel-coq by Adjedj et al.; McTT by Jang et al.

2/19

Quick refresher

Suppose we want to prove canonicity by induction.

3/19

Quick refresher

Suppose we want to prove canonicity by induction.

Easy case: computation on first-order types

I if bthen nelsem : Nat

3/19

Quick refresher

Suppose we want to prove canonicity by induction.

Easy case: computation on first-order types

I if bthen nelsem : Nat

Look at the recursive result on b, return the correct

recursive call among n and m.

3/19

Harder: higher-order types

fn : Nat

4/19

Harder: higher-order types

fn : Nat

f itself is responsible for the computation.

The recursive call on f should return

Va,PNat(n) - PNat(fn)!

4/19

Canonicity on terms depend on the canonicity on types!

5/19

Canonicity on terms depend on the canonicity on types!

For a : A we'd like

5/19

And more generally, forT'+a : A

I-rel . [[r]]
Ael 2 VY, Vra 2 [V];,,) = [AV]]

Arel -« Vy: (yrel . [[V]]r)_) [[a[V]]]Are|(yre|)

rel

That's the fundamental lemma of logical relations.

6/19

We also need a corresponding realizer for type and term

conversions, [A=B] and [a=b], .

7/19

We also need a corresponding realizer for type and term

conversions, [A=B] and [a=b], .

You can actually save some work and only define
conversion realizers as a partial equivalence relation with

[A]:=[A= Al

7/19

What about the universe?

In bare MLTT, the universe is left underspecified.

We have a choice in the logical relation when defining [- J:

Positive Negative

8/19

What about the universe?

In bare MLTT, the universe is left underspecified.

We have a choice in the logical relation when defining [- J:

Positive Negative

Inductive of codes Record of relations

8/19

What about the universe?

In bare MLTT, the universe is left underspecified.

We have a choice in the logical relation when defining [- J:

Positive Negative

Inductive of codes Record of relations

Limited to internal types | Can contain external types

8/19

What about the universe?

In bare MLTT, the universe is left underspecified.

We have a choice in the logical relation when defining [- J:

Positive Negative

Inductive of codes Record of relations

Limited to internal types | Can contain external types

We can feed the realizer of Hf : V(A:U),A—> Aa

specific relation to get a parametricity result.

8/19

What about the universe?

In bare MLTT, the universe is left underspecified.

We have a choice in the logical relation when defining [- J:

Positive Negative

Inductive of codes Record of relations

Limited to internal types | Can contain external types

Easy to formalize Dependent PER hell?

8/19

Too easy... right?

In the end, we just defined a (terminating) evaluator in

the meta-theory!

9/19

Too easy... right?

In the end, we just defined a (terminating) evaluator in
the meta-theory!
But we have no guarantees about correctness! If

[61g.0,, tells me b is true, I want a witness of that!

9/19

We could prove correctness after the fact, but it's usually
neater to make it correct-by-construction.

— Let's just add some information in our logical relation!

10/19

isTrue : (615,

rel

11/19

isTrue : b ~» true » [b]g,,

rel

Doesn't give us a derivation.

11/19

isTrue : - b =true - [b];,,

rel

Doesn't prove reduction works.

11/19

logrel-coq abstracts over the possible extra info we add

to the logical relation.

12/19

logrel-coq abstracts over the possible extra info we add

to the logical relation.

Axiomatizing precisely the bits we need for the

fundamental theorem is difficult.

12/19

Instantiating the logical relation

A good candidate for our extra info: derivations for an

algorithmic typing system.

FA—>B=M +M=z=A-PB
FA->B=A" -8B

trans

13/19

Instantiating the logical relation

A good candidate for our extra info: derivations for an

algorithmic typing system.

FA—>B=M +M=z=A-PB

trans
FA->B=A -8B
I
LogRel
N~
= A Y
FAsA rB=B o

FA->B=A -8B

13/19

Instantiating the logical relation

A good candidate for our extra info: derivations for an

algorithmic typing system.

A =M rM=A"->B

trans

13/19

The algorithmic instance of generic typing in logrel-coq is

chimeric, containing declarative parts.

14/19

The algorithmic instance of generic typing in logrel-coq is
chimeric, containing declarative parts.

We need to:

14/19

The algorithmic instance of generic typing in logrel-coq is
chimeric, containing declarative parts.

We need to:

1. Instantiate with a dumbed down algorithmic system;

14/19

The algorithmic instance of generic typing in logrel-coq is
chimeric, containing declarative parts.

We need to:
1. Instantiate with a dumbed down algorithmic system;

2. Deduce that the full algorithmic system satisfies the

interface;

14/19

The algorithmic instance of generic typing in logrel-coq is
chimeric, containing declarative parts.

We need to:
1. Instantiate with a dumbed down algorithmic system;

2. Deduce that the full algorithmic system satisfies the

interface;

3. Instantiate with the full algorithmic system.

14/19

The algorithmic instance of generic typing in logrel-coq is
chimeric, containing declarative parts.

We need to:
1. Instantiate with a dumbed down algorithmic system;

2. Deduce that the full algorithmic system satisfies the

interface;
3. Instantiate with the full algorithmic system.

Feels unsatisfactory.

14/19

The abstract mentions an alternative free-standing

system that types terms by first normalizing them.

15/19

The abstract mentions an alternative free-standing

system that types terms by first normalizing them.

F (A(n : Bool).n)zero ~» zero : Nat I zero : Nat
+ (A(n : Bool).n)zero : Nat

15/19

The abstract mentions an alternative free-standing

system that types terms by first normalizing them.

F (A(n : Bool).n)zero ~» zero : Nat I zero : Nat
+ (A(n : Bool).n)zero : Nat

15/19

The abstract mentions an alternative free-standing

system that types terms by first normalizing them.

F (A(n : Bool).n) zero ~»,; zero : Nat I zero : Nat
+ (A(n : Bool).n)zero : Nat

15/19

The abstract mentions an alternative free-standing

system that types terms by first normalizing them.

F (A(n : Bool).n) zero ~»,; zero : Nat I zero : Nat
+ (A(n : Bool).n)zero : Nat

— Lots of redundant work.
Better served by a form of algorithmic typing followed by

reflexivity for algorithmic conversion.

15/19

Conclusion

We're far from being able to match the literature on
logical relations for theoretical and practical reasons.
A lot of refactoring is needed if we want to tackle more

advanced systems efficiently.

16/19

Thanks for your attention!

17/19

Heterogeneous judgements

Completely heterogeneous judgements are nice to work

with, since they avoid arbitrary choices!

18/19

Heterogeneous judgements

Completely heterogeneous judgements are nice to work
with, since they avoid arbitrary choices!

Instead of
r-A=zA" TI,(x:?)FB

r-MNx:AB=Nx:A.B

18/19

Heterogeneous judgements

Completely heterogeneous judgements are nice to work
with, since they avoid arbitrary choices!

Instead of
r-A=zA" TI,(x:?)FB

r-MNx:AB=Nx:A.B

We have

r=ArFA=A T,(x:A)=AKx:A)-B=8
r=A-Nx:AB=Nx:A.B

18/19

Single mutual inductive

Reify different judgements as an inductive, and index
derivations with it.

“Tr't : A” : judgement
derivation : judgement - Type

19/19

Single mutual inductive

Reify different judgements as an inductive, and index
derivations with it.

“Tr't : A” : judgement
derivation : judgement - Type

Avoids Combined Scheme and meta-programming!

19/19

	Logical relations refresher
	What to put in a logical relation
	Over-engineering derivations

