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Mechanization projects

AGDA logrel-mltt by Abel, Öhman, and Vezzosi;

ROCQ logrel-coq by Adjedj et al.; McTT by Jang et al.
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Quick refresher

Suppose we want to prove canonicity by induction.

Easy case: computation on first-order types

⊢ if 𝑏 then 𝑛 else𝑚 ∶ Nat

Look at the recursive result on 𝑏, return the correct

recursive call among 𝑛 and 𝑚.
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Harder: higher-order types

⊢ 𝑓𝑛 ∶ Nat

𝑓 itself is responsible for the computation.

The recursive call on 𝑓 should return

∀𝑎, 𝑃Nat(𝑛) → 𝑃Nat(𝑓 𝑛)!
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Canonicity on terms depend on the canonicity on types!

For ⊢ 𝑎 ∶ 𝐴, we’d like

𝐴rel ∶ ⟦𝐴 ⟧

𝑎rel ∶ ⟦ 𝑎 ⟧𝐴rel
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And more generally, for Γ ⊢ 𝑎 ∶ 𝐴

Γrel ∶ ⟦ Γ ⟧

𝐴rel ∶ ∀𝛾, (𝛾rel ∶ ⟦ 𝛾 ⟧Γrel ) → ⟦𝐴[𝛾] ⟧

𝑎rel ∶ ∀𝛾, (𝛾rel ∶ ⟦ 𝛾 ⟧Γrel ) → ⟦𝑎[𝛾] ⟧𝐴rel(𝛾rel)

That’s the fundamental lemma of logical relations.
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We also need a corresponding realizer for type and term

conversions, ⟦𝐴 ≡ 𝐵⟧ and ⟦ 𝑎 ≡ 𝑏⟧𝐴rel
.

You can actually save some work and only define

conversion realizers as a partial equivalence relation with

⟦𝐴 ⟧ ≔ ⟦𝐴 ≡ 𝐴⟧.
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What about the universe?

In bare MLTT, the universe is left underspecified.

We have a choice in the logical relation when defining ⟦ ⋅ ⟧:

Positive Negative

Inductive of codes Record of relations

Limited to internal types Can contain external types

Easy to formalize Dependent PER hell?

We can feed the realizer of ⊢ 𝑓 ∶ ∀(𝐴 ∶ U), 𝐴 → 𝐴 a

specific relation to get a parametricity result.
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Too easy… right?

In the end, we just defined a (terminating) evaluator in

the meta-theory!

But we have no guarantees about correctness! If

⟦ 𝑏 ⟧Boolrel tells me 𝑏 is true, I want a witness of that!
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We could prove correctness after the fact, but it’s usually

neater to make it correct-by-construction.

→ Let’s just add some information in our logical relation!
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isTrue ∶

𝑏 ⇝ true →

⟦𝑏⟧Boolrel

Doesn’t give us a derivation.
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isTrue ∶ ⋅ ⊢ 𝑏 ≡ true →⟦𝑏⟧Boolrel

Doesn’t prove reduction works.

11/19



logrel-coq abstracts over the possible extra info we add

to the logical relation.

Axiomatizing precisely the bits we need for the

fundamental theorem is difficult.
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Instantiating the logical relation

A good candidate for our extra info: derivations for an

algorithmic typing system.

⋯

⊢ 𝐴 → 𝐵 ≡ 𝑀

⋯

⊢ 𝑀 ≡ 𝐴′ → 𝐵′

trans
⊢ 𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′

LogRel Not so fast!
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The algorithmic instance of generic typing in logrel-coq is

chimeric, containing declarative parts.

We need to:

1. Instantiate with a dumbed down algorithmic system;

2. Deduce that the full algorithmic system satisfies the

interface;

3. Instantiate with the full algorithmic system.

Feels unsatisfactory.
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The abstract mentions an alternative free-standing

system that types terms by first normalizing them.

⊢ (𝜆(𝑛 ∶ Bool). 𝑛) zero ⇝

wt

zero ∶ Nat ⊢ zero ∶ Nat

⊢ (𝜆(𝑛 ∶ Bool). 𝑛) zero ∶ Nat

→ Lots of redundant work.

Better served by a form of algorithmic typing followed by

reflexivity for algorithmic conversion.
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Conclusion

We’re far from being able to match the literature on

logical relations for theoretical and practical reasons.

A lot of refactoring is needed if we want to tackle more

advanced systems efficiently.
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Thanks for your attention!
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Heterogeneous judgements

Completely heterogeneous judgements are nice to work

with, since they avoid arbitrary choices!

Instead of
Γ ⊢ 𝐴 ≡ 𝐴′ Γ, (𝑥 ∶ ?) ⊢ 𝐵

Γ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ≡ Π𝑥 ∶ 𝐴′ . 𝐵

We have

Γ ≡ Δ ⊢ 𝐴 ≡ 𝐴′ Γ, (𝑥 ∶ 𝐴) ≡ Δ, (𝑥 ∶ 𝐴′) ⊢ 𝐵 ≡ 𝐵′

Γ ≡ Δ ⊢ Π𝑥 ∶ 𝐴. 𝐵 ≡ Π𝑥 ∶ 𝐴′ . 𝐵′
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Single mutual inductive

Reify different judgements as an inductive, and index
derivations with it.

“Γ ⊢ t : A” : judgement
derivation : judgement → Type

Avoids Combined Scheme and meta-programming!
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