Project Hyben:
Formalising Monitors for
Distributed Deadlock Detection

Radostaw Rowicki', Alceste Scalas', Adrian Francalanza?

Technical University of Denmark
2University of Malta

TYPES 2025

=]
—
=

M

About the project

Distributed deadlock detection via black-box monitors
¢ |nspiration: Mitchell / Chandy, Misra, Haas
Soundness and completeness

All mechanised in Coq

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 2

)
e
=

Deadlock

M

DTU Compute Formalising Monitors for Distributed Deadlock Detection

(=}
—_—
=

Deadlock

M

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection

=]
=
=

b d
— Deadlock
Sof S
Soo S1o
1 2

Formalising Monitors for Distributed Deadlock Detection 3

=]
=
=

— Deadlock
Sof S
3
Soo Sto
1 2

Formalising Monitors for Distributed Deadlock Detection 3

=]
—
=

Deadlock

M

So1 S

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 3

=]
—
=

Deadlock

M

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 3

=]
—
=

Deadlock

M

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 3

=]
—
=

Deadlock

M

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 3

=)
—_
=

Services and monitored services

M

Serv = [Qin | Proc | Qouil

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection a

(=]
—_
=

Services and monitored services

_ “In-code” state
Input queue output queue

\
Serv = [Qin | Proc | Qouil

M

Our case: Erlang gen_server

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection a

(=]
—_
=

Services and monitored services

“In-code” state
input queue output queue

\
Serv = [Qin | Proc | Qouil

M

MServ =[Qu | @ | Serv]

gi‘?' . state X (state X msg — state)

(=]
—_
=

Services and monitored services

“In-code” state
input queue output queue

\
Serv = [Qin | Proc | Qouil

M

monitor queue monitor process service

\ | -
MServ =[Qu | @ | Serv]

gi‘?' . state X (state X msg — state)

(=]
—_
=

Services and monitored services

“In-code” state
input queue output queue

\
Serv = [Qin | Proc | Qouil

M

monitor queue monitor process service
\ | /
MServ =[Qu | @ | Serv]
<

_-

ms

gi‘?' . state X (state X msg — state)

(=]
—_
=

Services and monitored services

“In-code” state
input queue output queue

\
Serv = [Qin | Proc | Qouil

M

monitor queue monitor process service

* -~

-_——_- ~ -

- -

DTU Compute ‘ormal ributed Deadlock Detection a

(=]
—_
=

Services and monitored services

“In-code” state
input queue output queue

\
Serv = [Qin | Proc | Qouil

M

monitor queue monitor process service
\ | /
MServ =[Qu | @ | Serv]

DTU Compute

(=]
—_
=

Services and monitored services

“In-code” state
input queue output queue

\
Serv = [Qin | Proc | Qouil

M

monitor queue monitor process service
\ | /
MServ =[Qu | @ | Serv]

gi‘?' . state X (state X msg — state)

(=]
—_
=

Services and monitored services

“In-code” state
input queue output queue

\
Serv = [Qin | Proc | Qouil

M

monitor queue monitor process service
\ | /

MServ = [Qu @ | Serv]

A .Y

~o - \

DTU Compute

)
e
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny) \U’ /ﬂ\

Soundness: If mon(Np) & N
then

o N, mon’(Ny)

QNOMI_)N1

DTU Compute Formalising Monit ributed Deadlock Detection 5

)
e
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny) \U’ /ﬂ\

Soundness: If mon(Np) & N

then —
o N, mon’(Nj) @\
e No ﬂf_) N; @? @?

DTU Compute Formalising Monit ributed Deadlock Detection 5

)
e
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny) \U’ /ﬂ\

Soundness: If mon(Np) & N

then —
o N, mon’(Nj) @\
e No ﬂf_) N; 1 E? E?

DTU Compute Formalising Monitors for Distributed Deadlock Detection 5

)
e
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny) \U’ /ﬂ\

Soundness: If mon(Np) & N

then —
o N, mon’(Nj) @\
e No ﬂf_) N; 1 E? E?

DTU Compute Formalising Monitors for Distributed Deadlock Detection 5

)
e
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny) \U’ /ﬂ\

Soundness: If mon(Np) & N

then —
o N, mon’(Nj) @\
e No ﬂf_) N; 1 E? E?

DTU Compute Formalising Monitors for Distributed Deadlock Detection 5

=)
—_
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny)

Soundness: If mon(Ng) 2 N
then

o N, mon’(Ny)

!
o Ny 27 N,

DTU Compute

Formalising Monitors for Distributed Deadlock Detection

=)
—_
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny)

Soundness: If mon(Ng) 2 N
then

o N, mon’(Ny)

!
o Ny 27 N,

DTU Compute

Formalising Monitors for Distributed Deadlock Detection

=)
—_
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny)

Soundness: If mon(Ng) 2 N
then

o N, mon’(Ny)

!
o Ny 27 N,

DTU Compute

Formalising Monitors for Distributed Deadlock Detection

=)
—_
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny)

Soundness: If mon(Ng) 2 N
then

o N, mon’(Ny)

!
o Ny 27 N,

DTU Compute

Formalising Monitors for Distributed Deadlock Detection

=)
—_
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny)

Soundness: If mon(Ng) 2 N
then

o N, mon’(Ny)

!
o Ny 27 N,

DTU Compute

Formalising Monitors for Distributed Deadlock Detection

=)
—_
=

M

Monitoring: transparency

Completeness: If Ny < N;
then

® mon(Np) g mon’(Ny)

Soundness: If mon(Ng) 2 N
then

o N, mon’(Ny)

!
o Ny 27 N,

DTU Compute

Formalising Monitors for Distributed Deadlock Detection

)
e
=

M

Monitoring: transparency

L@
Completeness: If Ny < N;
then
* mon(Np) = mon’(Ny) \U’ /ﬂ\
Soundness: If mon(Ng) 2 N
then —
. NU—,>mon’(N1) 4@3

o ++ o’ rd N

[NO —_— N1 1 !?? 2 5

DTU Compute Formalising Monitors for Distributed Deadlock Detection

=]
—
=

M

Monitoring: correctness

Completeness: All deadlocks are U ﬂ\

eventually reported @
2

Soundness: All alarms indicate real

deadlocks ZZ??

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 5

=]
—
=

M

Monitoring: correctness

Completeness: All deadlocks are U ﬂ\
eventually reported

Soundness: All alarms indicate real ’3

deadlocks | ZZ??

DTU Compute Formalising Monit ributed Deadlock Detection 5

=]
—
=

M

Monitoring: correctness

Completeness: All deadlocks are U ﬂ\
eventually reported

Soundness: All alarms indicate real ’3

deadlocks | ZZ;W? |

DTU Compute Formalising Monitors for Distributed Deadlock Detection 5

=]
—
=

M

Monitoring: correctness

Completeness: All deadlocks are U ﬂ\
eventually reported

Soundness: All alarms indicate real ’3
5

deadlocks | ZZ |

DTU Compute Formalising Monitors for Distributed Deadlock Detection 5

=]
—
=

M

Monitoring: correctness

Completeness: All deadlocks are U ﬂ\
eventually reported

Soundness: All alarms indicate real

deadlocks . ti?? |

DTU Compute

=]
—
=

Results

M

Everything mechanised and proven in Coq (over 25’000 lines)

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 6

=]
—
=

Results

M

Everything mechanised and proven in Coq (over 25’000 lines)

1 Theorem transp_sound : 1 Definition detect_sound (Ng : Net) (ig : Imstr) :=

2 V (Ng : Net) (ig : Instr) path' (MN; : MNet), 2 V path' MNy,

3 (ip No = path' }» MNy) — 3 (ip No = path' }= MN{) A reports_deadlock MN; —

4 4

5 3 path, 5 3 path,

6 (No =[path }> deinstr MN;). 6 (No o path = deinstr MNy) A has_deadlock (deinstr MNy).
7 7

8 8

9 Theorem transp_complete : 9 Definition detect_complete (Ng : Net) (ig : Imstr) :=

10 V (Ng Ny : Net) path (ip : Imstr), 10 V path Ny,

11 (No = path 5 Ny) — 11 (No =[path > Ny) A has_deadlock Ny —

12 12

13 3 path' (iy : Instr), 13 3 path' (iy : Imnstr),

14 (ip No = path' }» iy Nq). 14 (ip No = path' }» iy Ny) A reports_deadlock (iy Ni).

Main challenge: coming up with invariants :)

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection

=)
—_
=

M

Processesin Coqg/Gallina

Parameters Name Tag Val : Set.

CoInductive Proc :=

| Tau (P : Proc)

| Send (to : Pid) (msg : Val) (P : Proc)

| Recv (select : Pid — Val — option Proc).

o hwWN =

Selective receive:
e Processes can filter messages
e |[f message is accepted, the value yields a continuation
¢ Co-inductive functional syntax embeds Gallina for sequential features
* No issues with binders!

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 7

=)
—_
=

= Processesin Coqg/Gallina
Binders bad:
1 Parameters Name Tag Val : Set.
2 [1] Bengtson. Formalising the pi-calculus using nominal logic
3 ColInductive Proc := . L. .
4 | Tau (P : Proc) [2] Accattoli. Formalizing Functions as Processes
5 | Send (to : Pid) (msg : Val) (P : Proc) . . .
6 | Recv (select : Pid —s Val — option Proc). |3] Garbone. The Concurrent Calculi Formalisation

Benchmark

Selective receive:
e Processes can filter messages
¢ |f message is accepted, the value yields a continuation
¢ Co-inductive functional syntax embeds Gallina for sequential features
* No issues with binders!

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 7

(=]
—_
=

M

Processesin Coqg/Gallina

1 Definition Msg :=N. —module(fwd_service).

2

3 Definition fwd_service (target : string) := —behaviour(gen_server).

4 {l —export([init/1, handle_call/3]).

5 (* State stores the count of forwarded messages *)

6 state_t :=Nj init(Target) —

7 register(target, Target),

8 (* Initial count is 0 *) %k Initial count is 0

9 init := 0; {ok, 0}.

10

11 (x [handle_call] handles calls *) %% “handle_call” handles calls

12 handle_call (_from : Pid) (msg : Msg) (state : N) := handle_call(_From, Msg, State) —

13 match msg with case Msg of

14 | 0= 0—

15 (x Reply with the count *) %% Reply with the count

16 reply c ¢ {reply, State, State};

17 | S msg' = I

18 (* Query the target with the reduced value *) %% Query the target with the reduced value
19 let? x := target ! msg' in X = gen_server:call(target, Msg — 1),
20 (* Forward the reply and update the count *) %% Forward the reply and update the count
21 reply x (c + 1) {reply, X, State + 1}
22 end |}. end.

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection

)
e
=

Lessons learned: prove reflexively

M

9

Formalising Monitors for Distributed Deadlock Detection

June 12, 2025 DTU Compute

=)
—_
=

M

June 12, 2025

Lessons learned: prove reflexively

Theorem detection_completeness : V (ig : instr) No MN; mpathgy DS,
KIC (ig No) —
(i No = mpathy | MN{) —
dead_set DS MNy —

3 mpathy MNp n, (MNy ={ mpathy }> MN2) A In n DS A alarm (MNp n) = true.

Proof.
intros.

consider (3 n, In n DS A dep_on MNy n n) by eauto using deadset_dep_self.

consider (I n', dep_on MNy n n' A ac n' MN{).
assert (dep_on MN; n' n') by eauto using dep_reloop with LTS.

consider (3 D mpathy MNp, (MNy =] mpathy | MNp)
N dead_set D MN4
A alarm (MNp n') = true
)

by eauto using ac_to_alarm.

3 mpathy, MNp, n'.
now eauto with LTS.
Qed.

DTU Compute

Formalising Monitors for Distributed Deadlock Detection

(=]
—_
=

> .
= Lessons learned: prove reflexively

1 Theorem detection_completeness : V (ip : instr) No MNy mpathg DS,

2 KIC (ip Np) —

3 (ig No = mpathg | MNy) —

4 dead_set DS MNy —

5 3 mpathy MNp n, (MNy ={ mpathy }> MN2) A In n DS A alarm (MNp n) = true.

6

7 Proof.

8 intros.

9

10 consider (3 n, In n DS A dep_on MNy n n) by eauto using deadset_dep_self.

12 consider (I n', dep_on MNy n n' A ac n' MN{).

13

14 assert (dep_on MN; n' n') by eauto using dep_reloop with LTS.
15

16 consider (3 D mpathy MNp, (MNy =] mpathy | MNp)

17 N dead_set D MNy

18 A alarm (MNp n') = true

19)

20 by eauto using ac_to_alarm.

21

22 3 mpathy, MNp, n'.
23 now eauto with LTS.
Qed.

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection

=]
—
=

> .
= Lessons learned: prove reflexively

1 — destruct n.

2 destruct s; destruct &t; simpl in .

3 + kill HO; hsimpl in *.

4 * destruct MQO; kill H7.

5 hsimpl in *.

6 econstructor 1; ieattac.

7 specialize (H_I_hate_my_life v0). bs.

8 * destruct MQO; kill H7.

9 hsimpl in *.

10 (* TODO should use H_wtf7 here *)

11 econstructor 2; destruct H_wtf6; ieattac.

12 specialize (H v); bs.

13 specialize (H v); bs.

14 + destruct lockedO as [ng]|].

15 2: kill HO; bs.

16 smash_eq n ng; hsimpl in F *.

17 » destruct p, msg; hsimpl in «.

18 smash_eq originy selfO; hsimpl in =*.

19 — destruct (PeanoNat.Nat.eqb lock_countO 1lg

20 ++ kill HO; hsimpl in ».

21 —— destruct MQO; kill H7; hsimpl in »; econst

22 (x Leg space *) specialize (H v0); bs.

23 —— destruct MQO; kill H7; hsimpl in *; econstru

24 specialize (H v); bs.

specialize (H v); bs.

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection

)
e
=

Lessons learned: use Ltac2

M

Much better semantics compared to Ltac1
Slightly uglier, but consistent

Nicely typed

Good interop with Ltac1

DTU Compute Formalising Monitors for Distributed Deadlock Detection 1

=]
—
=

Lessons learned: use Ltac2

M

Much better semantics compared to Ltac1
Slightly uglier, but consistent

Nicely typed

Good interop with Ltac1

Missing a feature in Ltac2? You can contribute!
B~ Port rewrite strat to Ltac2 (IFIEINuad part: ltac2

#20544 by radrow was merged yesterday * Approved O 3 tasks done EPQ 1+rc1

f Ltac2: Add std.Red module for conversions and centralize reduction tactics around it
part: Itac2

#20543 by radrow was merged 3 weeks ago + Approved O 3 tasks done EP 9.1+rcl

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 1

=]
—
=

M

Summary

¢ Black-box monitors for distributed deadlock detection
e Soundness and completeness derived from syntax and semantics
® Rocg-solid, mechanised proofs

o

June 12, 2025 DTU Compute Formalising Monitors for Distributed Deadlock Detection 12

