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CZF and MLTT

To formalize Bishop’s constructive analysis,
Aczel [1, 2, 3] introduced a system of constructive set theory called
constructive Zermelo-Fraenkel set theory CZF

Several set-theoretic principles and set-existence axioms were
codified on the basis of first-order intuitionistic logic with equality

Martin-Löf [4] took a different approach: he formulated
a framework of constructive type theory called MLTT

Aczel also showed that these two approaches are compatible

He defined a cumulative hierarchy V of sets as a W-type in MLTT,
and interpreted all axioms of CZF in MLTT
V is a type with the equivalence relation

.
=, which is similar to

bisimulation

Each set a : V can be considered as {pred a x | x : index a}
index a is the type of indices for the elements of a
pred a x with x : index a is the element of a of index x

The relation a ∈ b is defined as a ∈ b := Σ(x:index b)(a
.
= pred b x)
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Transitive Closures of Sets

The transitive closure of a set can be defined in CZF (cf. [5])

The transitive closure TC(a) of a set a satisfies the equation

TC(a) = a ∪
∪

{TC(x) | x ∈ a},

which implies that TC(a) is a transitive set:

∀x∀y(y ∈ x ∈ TC(a) → y ∈ TC(a))

So TC(a) contains as its elements all sets below a in the hierarchy

Through Aczel’s interpretation of CZF, one has the corresponding
operator tc : V → V in MLTT

By using Dybjer’s indexed inductive definition [6],
one can then define the accessibility Acc : V → Set on V
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Accessible Sets

Put ∀(x∈a)Φ(x) := (i : index a) → Φ(pred a i)

The type Acc a says that “a set a is constructed from below”

the constructor prog : (a : V) → ∀(x∈tc a)Acc x → Acc a

the induction principle indAcc:

indAcc : (P : (a : V) → Acc a → Set ℓ) →(
(a : V)(f : ∀(x∈tc a)Acc x) →

((i : index (tc a)) → P (pred (tc a) i) (f i)) →

P a (prog a f)
)
→

(a : V)(c : Acc a) → P a c

indAcc P h a (prog a f) =

h a f (λi.indAcc P h (pred (tc a) i) (f i))
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Properties of Acc

The induction principle for Acc is stronger than V-induction,
i.e., the W-induction principle on V

The former admits the induction hypothesis not only for each v ∈ a,
but also for each w ∈ tc a (i.e., any set w below a in the hierarchy)

E.g., a universe type U a containing as its subuniverses not only U v
for any v ∈ a, but also U w for any w ∈ tc a

The Acc-induction principle has the simple computation rule

In fact, the operator tc is accompanied by a similar induction
principle indtc, which is stronger than V-induction too
But indtc lacks a simple computation rule
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Computation of tc-Induction

One might try to show that indtc has the computation rule below:

indtc P [a predicate for induction]

h [an inductive clause]

a [an argument]

= h a (λi.indtc P h (pred (tc a) i))

but this is a non-terminating rule:

indtc P h a = h a (λi.indtc P h (pred (tc a) i))

= h a (λi.h (pred (tc a) i)(λj.indtc P h (pred (tc (pred (tc a) i)) j))) = · · ·
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Aim

We first show

In MLTT with function extensionality the above computation rule
of the tc-induction principle holds propositionally
With this propositional computation rule comptc,
the tc-induction principle provides a useful inductive definition

We then verify

The accessibility Acc on V is definable by means of comptc
without indexed inductive definition

Acc a =Set ∀(x∈tc a)Acc x

Here the constructor prog : (a : V) → ∀(x∈tc a)Acc x → Acc a
is defined by transporting from the RHS to LHS
The Acc-induction principle is defined by transporting
in the opposite direction

By using function extensionality again, we show that
the type Acc a has a unique inhabitant for any a : V

Yuta Takahashi Accessible Sets in MLTT with FE 7 / 15



Aim

We first show

In MLTT with function extensionality the above computation rule
of the tc-induction principle holds propositionally
With this propositional computation rule comptc,
the tc-induction principle provides a useful inductive definition

We then verify

The accessibility Acc on V is definable by means of comptc
without indexed inductive definition

Acc a =Set ∀(x∈tc a)Acc x

Here the constructor prog : (a : V) → ∀(x∈tc a)Acc x → Acc a
is defined by transporting from the RHS to LHS
The Acc-induction principle is defined by transporting
in the opposite direction

By using function extensionality again, we show that
the type Acc a has a unique inhabitant for any a : V

Yuta Takahashi Accessible Sets in MLTT with FE 7 / 15



Aim

We first show

In MLTT with function extensionality the above computation rule
of the tc-induction principle holds propositionally
With this propositional computation rule comptc,
the tc-induction principle provides a useful inductive definition

We then verify

The accessibility Acc on V is definable by means of comptc
without indexed inductive definition

Acc a =Set ∀(x∈tc a)Acc x

Here the constructor prog : (a : V) → ∀(x∈tc a)Acc x → Acc a
is defined by transporting from the RHS to LHS
The Acc-induction principle is defined by transporting
in the opposite direction

By using function extensionality again, we show that
the type Acc a has a unique inhabitant for any a : V

Yuta Takahashi Accessible Sets in MLTT with FE 7 / 15



tc-Induction Principle

Function extensionality:

funext : (A : Set ℓ1)(B : A → Set ℓ2)

(f g : (x : A) → B x) → ((x : A) → f x =B x g x) →
f =(x:A)→B x g

Without funext, one can derive the tc-induction principle

indtc : (P : V → Set ℓ) → ((a : V) → ∀(x∈tc a)P x → P a) →
(a : V) → P a

Proposition (with funext)

For any P : V → Set ℓ, h : (b : V) → ∀(x∈tc b)P x → P b and a : V,
we have

comptc P h a : indtc P h a =P a h a (λi.indtc P h (pred (tc a) i)).
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Accessible Sets by comptc

Putting

P [a predicate for induction] := λa.Set

acc [an inductive clause] := λa.λg.(i : index (tc a)) → g i

Acc := indtc P acc

we have
comptc P acc a : Acc a =Set ∀(x∈tc a)Acc x

By transporting from RHS to LHS, we have

prog : (a : V) → ∀(x∈tc a)Acc x → Acc a

In the opposite direction,

inv : (a : V) → Acc a → ∀(x∈tc a)Acc x
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Derived Acc-Induction Principle

The Acc-induction principle indAcc:

indAcc : (P : (a : V) → Acc a → Set ℓ) →(
(a : V)(f : ∀(x∈tc a)Acc x) →

((i : index (tc a)) → P (pred (tc a) i) (f i)) →

P a (prog a f)
)
→ (a : V)(c : Acc a) → P a c

By transporting along Acc a =Set ∀(x∈tc a)Acc x,
we have P a (prog a (inv a c))

From a general fact on transport

(A : Set ℓ1)(P : A → Set ℓ2)(x y : A)(p : x =A y)(c : P x)

→ transport P (sym p) (transport P p c) =P x c,

we have prog a (inv a c) =Acc a c, hence P a c holds
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Uniqueness of Acc a

We first verify that for any a : V, Acc a holds

We then show (t s : Acc a) → t =Acc a s by tc-induction on a:
for any t, s : Acc a, we have

inv a t : ∀(x∈tc a)Acc x inv a s : ∀(x∈tc a)Acc x

By IH, (x : index (tc a)) → inv a t x =Acc x inv a s x holds

By funext, we then have inv a t =∀(x∈tc a)Acc x inv a s

The congruence with prog a gives

prog a (inv a t) =Acc a prog a (inv a s)

Canceling the both sides, we obtain t =Acc a s
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Future Work

Aczel’s interpretation of CZF in MLTT was refined in
Homotopy type theory (HoTT) [7]

The cumulative hierarchy V of sets is defined not as a W-type but
as a higher inductive type
The equivalence relation

.
= on V is replaced with

the identity type =V and V has the path constructor for =V
Other interpretations of CZF in HoTT were investigated in, e.g.,
[8, 9, 10]

In the literature of HoTT the accessible part of a binary relation is
defined by indexed inductive definition [7, 11]

We will examine in some HoTT-interpretation of CZF

whether the tc-induction principle and
its propositional computation rule are derivable
whether the accessibility Acc on V is definable without
indexed inductive definition
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Thank you for your attention!
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