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The problem of semi-simplicial types

Construct the following family of family types in homotopy type theory:

X0 : Type (points)

X1 : X0 ×X0 → Type (segments)

X2 : Πx1x2x3. X1(x1, x2) → X1(x1, x3) → X1(x2, x3) → Type (triangles)

...
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The problem of semi-simplicial types

Construct the following family of family types in pure type theory:

X0 : Type (points)

X1 : X0 ×X0 → Type (segments)

X2 : Πx1x2x3. X1(x1, x2) → X1(x1, x3) → X1(x2, x3) → Type (triangles)

...

two problems into one

semi-simplicial types needs – at least – a
description of higher-

dimensional coherences


recipe for indexed semi-simplicial this talk, for HSet,

see also Voevodsky, Part-Luo,
Altenkirch-Capriotti-Kraus


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The fibred/indexed correspondence for HSet

For B : HSet

E : HSety
B

≃ B → HSet
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Iterating the fibred/indexed correspondence for HSet

Application to definition of Reedy presheaves in indexed form, here for semi-cubical sets:

fibred form vs indexed form
Y0 : HSet X0 : HSet (points)xdL

xdR

Y1 : HSet X1 : X0 ×X0 → HSet (segments)xdL⋆

xdR⋆

xd⋆L

xd⋆R

Y2 : HSet X2 : Π(xLL, xLR).ΠxL∗ : X1(xLL, xLR).
Π(xRL, xRR).ΠxR∗ : X1(xRL, xRR).

+ coherences X1(xLL, xRL)×X1(xLR, xRR) → HSet (squares)
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Iterating the fibred/indexed correspondence for HSet

Application to the definition of Reedy presheaves in indexed form, here for cubical sets:

fibred form vs indexed form
Y0 : HSet X0 : HSet (points)xdL

xdR

Y1 : HSet X1 : X0 ×X0 → HSet (segments)xdL⋆

xdR⋆

xd⋆L

xd⋆R

Y2 : HSet X2 : Π(xLL, xLR).ΠxL∗ : X1(xLL, xLR).
Π(xRL, xRR).ΠxR∗ : X1(xRL, xRR).

+ coherences X1(xLL, xRL)×X1(xLR, xRR) → HSet (squares)
Motivations:
1. The iterated fibred/indexed correspondence is interesting in itself
2. Suggests models of type theory closer to the syntax: e.g. equality interpreted as a

(relevant) relation rather than as a span
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Rest of the talk

Presheaves in “indexed” form

- following a n-ary “parametricity” recipe

- s.t. unary parametricity gives augmented semi-simplicial sets

- and binary parametricity gives semi-cubical sets

- equipped with a degeneracy

- machine-checked in Rocq
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A uniform approach to augmented simplicial sets and cubical sets
Augmented simplicial and cubical categories only differ in the “arity” of a finite set ν:

Obj := N
Hom(p, n) := {l ∈ (ν ⊔ {⋆})n | number of ⋆ in l = p}

g ◦ f :=


f if g = ϵ

a (g′ ◦ f ) if g = a g′,where a ∈ ν

a (g′ ◦ f ′) if g = ⋆ g′, f = a f ′, where a ∈ ν or a = ⋆

id := ⋆ . . . ⋆ n times for id ∈ Hom(n, n)

augmented semi-simplicial sets with ν = {0} semi-cubical sets with ν = {L,R}
(counting from -1) (counting from 0)
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An effective indexed construction as a dependent stream of dependent sets

ν-sets

Truncated ν-sets

where fullframenm is defined by mutual recursive construction (see next slides)
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The recursive process used to build frames from layers of paintings

11



The recursive construction, formally

where we need to define restrframe (see next slide)
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The recursive construction: restrictions (“faces”)

where we need to define cohframe (see next slide)
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The recursive construction: coherences

where we hide many steps of equational reasoning: proof-irrelevance of equality in HSet,
identification of equality of pairs and pairs of equalities, groupoid properties of equality
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About the formalisation

Complex proof of termination

- made several unsuccessful attempts

- construction completed in Rocq in Apr 2022
a (inductively building 3 levels at once with two subinductions)

- degeneracies completed in Nov 2024

- we are working on a simplification saving a lot of equational reasoning

- code at https://github.com/artagnon/bonak

Note: “paper” construction also fully formulated in Agda (w/o termination)
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Adding (one) degeneracy (in the last direction)

fibred form vs indexed form

Y0 : HSet X0 : HSet (points)
↑↑↓
Y1 : HSet X1 : X0 ×X0 → HSet (segments)

↑↑↑↑↓ r0 : Πx0 : X0. X1(x0, x0)
Y2 : HSet X2 : Π(x0LL, x

0
LR).Πx

1
L∗ : X1(x

0
LL, x

0
LR).

Π(x0RL, x
0
RR).Πx

1
R∗ : X1(x

0
RL, x

0
RR).

+ coherences X1(x
0
LL, x

0
RL)×X1(x

0
LR, x

0
RR) → HSet (squares)

r1 : Π(x0L, x
0
R) : (X0 ×X0).Πx

1 : X1(x
0
L, x

0
R).

X2((x
0
L, x

0
L), r0(x

0
L), (x

0
R, x

0
R), r0(x

0
R), (x

1, x1))
... ...
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The added degeneracy is parametric : in the binary case, it gives a
standard cubical degeneracy; in the unary case, it gives a ParamTT-like

degeneracy and not a simplicial degeneracy
First, our degeneracy implies a distinguished point r−1(a) for any a : X−1. Then:

source
(over some a : X−1)

b b c
q

parametric
degeneracy b r−1(a)

r0(b)

r−1(a)

b c

r0(c)

q

r0(b)

r1(q)

simplicial
degeneracy b b

s0(b)

c

b c

s0(c)

q

q

s1(q) actually
a 1-connection!
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Adding a degeneracy

For any (X0, X1, ...) : νSet, we define a stream of degeneracies:

νreflSet(X0, X1, ...) ≜
Σr0 : Πd : fullframe0.Πx : X0(d). X1(refl

0
fullframe(d), λϵ. x).

Σr1 : Πd : fullframe1(X0).Πx : X1(d). X2(refl
1
fullframe(r0)(d), λϵ. x).

Σr2 : Πd : fullframe2(X0, X1).Πx : X2(d). X3(refl
2
fullframe(r0, r1)(d), λϵ. x).

...

where

reflnfullframe(r−1, ..., rn−1) : fullframe
n(X−1, ..., Xn−1) → framen+1,n(X−1, ..., Xn)

computes the n first layers of the border of rn(d)(x), knowing that the last layer is made
of ν times x itself, so that

(reflnfullframe(r−1, ..., rn−1)(d), λϵ. x) : frame
n+1,n+1(X−1, ..., Xn)

is a full frame.
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Adding a degeneracy

On the way, we need two coherence conditions:

idrestrreflnframe,ϵ(r−1, ..., rn−1) (d : fullframen(X0, ..., Xn−1)) :
restrn,nframe,ϵ,n(refl

n
fullframe(r−1, ..., rn−1)(d)) = d

cohrestrreflnframe,ϵ,p<n(r−1, ..., rn−1) (d : framen,p(X0, ..., Xn−1)) :

restrn,pframe,ϵ,p(refl
n,p
frame(r−1, ..., rn−1)(d)) = refln−1,p

frame (r−1, ..., rn−2)(restr
n−1,p
frame,ϵ,p(d))

where refln,pframe generalises reflnfullframe to prefixes of fullframen:

refln,pframe(r−1, ..., rn−1) : frame
n,p(X−1, ..., Xn−1) → framen+1,p(X−1, ..., Xn)
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Summary

• Machine-checked parametricity-based definition of indexed presheaves

• Uniformly represents simplicial and cubical sets

• Addition of one (parametric) degeneracy in the last direction completed

• More compact definition in progress, relying on finer-grain dependencies between the
different components of the construction
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