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Motivation

▶ We work in univalent foundations a.k.a. homotopy type theory (HoTT).

▶ Injective types were used by Escardó to construct infinite searchable types, see his
TYPES 2019 abstract, but the topic has a rich theory of its own.

▶ In this talk, we present new examples and counter-examples of injective types.
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Injective types
▶ Def. A type D is (algebraically) injective if for every embedding j : X ↪→ Y , any

map f : X → D into D has a designated extension f /j .

X Y
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f

j

f /j
(f /j ◦ j = f )

▶ Algebraic signals that we require a designated extension — so formulated with Σ
instead of its propositional truncation ∃ — but for this talk we drop the adjective.

▶ Recall: embedding ≈ homotopically well-behaved injection.
More precisely, j is an embedding if the canonical map x = x ′ → j x = j x ′ is an
equivalence, or equivalently, if the fibers of j are propositions.

▶ The notion of injectivity is sensitive to universe levels, so we really study
U , V-injective types where X : U and Y : V, but we largely ignore this in this talk.
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Examples of injective types
▶ Any univalent universe U
▶ The type ΩU of propositions in a universe U
▶ The type L X := Σ(P : ΩU), (P → X ) of partial elements of a type X : U
▶ The type of ordinals (= well-orderings) in U

Injectivity of U : Given j : X ↪→ Y and a type family f : X → U , we define
f /j : Y → U by

f /j(y) := Σ(x , −) : j−1(y), f x ,

where j−1(y) := Σx : X , j x = y .
We can also use Π.

New examples
▶ The type of iterative (multi)sets in U
▶ The types of small ∞-magmas, monoids and groups
▶ The underlying set of any sup-compete poset, or more generally, of any pointed

dcpo
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Injective dependent sums

▶ The injectivity of ∞-magmas, monoids and groups, follows from the injectivity of
univalent universes via sufficient criterion for the injectivity of Σ-types.

▶ For subtypes there is a necessary and sufficient criterion:
Thm. A subtype Σ(d : D), P d of an injective type D is injective if and only if we
have f : D → D such that for all d : D

(i) P holds for f d and
(ii) P d implies f d = d .

▶ Ex. The injectivity of ΩU follows by taking P := is-prop and f to be the
propositional truncation.
This generalizes to any reflective subuniverse.
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Injective types are necessarily large
▶ All the examples of injective types are large.

(Without propositional resizing, carriers of nontrivial pointed dcpos are large.)

This is no coincidence:

▶ Thm. If there is a U , U-injective type in U with two distinct points, then the type
Ω¬¬ := Σ(P : ΩU ) × (¬¬P → P) of ¬¬-stable propositions in U , whose native
universe is U+, is equivalent to a type in U .

▶ The conclusion of the theorem, the resizing of Ω¬¬, is not provable in univalent
foundations. This follows from a proof-theoretic argument due to Andrew Swan.

▶ This theorem is comparable to a result of Aczel et al.: in the predicative set
theory CZF it is consistent that the only injective sets (as opposed to classes) are
singletons.
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Towards counter-examples of injective types

▶ With excluded middle, the injective types are precisely the pointed types.
Thus, the only type that is provably not injective is the empty type.

▶ But there are plenty of examples of types that cannot be shown to be injective in
constructive mathematics, because their injectivity implies a constructive taboo:
a statement that is not constructively provable and is false in some models.

▶ The relevant taboo in this case is weak excluded middle: for any proposition P,
either ¬P or ¬¬P holds.
This is is equivalent to De Morgan’s law.
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Counter-examples of injective types
▶ If any of the following types is injective, then weak excluded middle holds.

▶ The type of booleans 2 := 1 + 1.

▶ The simple types, obtained from N by iterating function types.

▶ The type of Dedekind reals.

▶ The type of conatural numbers N∞.

▶ More generally, any type with an apartness relation and two points apart.
Recall: apartness relation ≈ positive (constructive) strengthening of ̸= .

▶ While the type Σ(X : U), X of pointed types and the type Σ(X : U), ¬¬X of
non-empty types are both injective, the type of inhabited types need not be.

Prop. The type Σ(X : U), ∥X∥ of inhabited types is injective if and only if all
propositions are projective (a weak choice principle).
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Non-properties of injective types

▶ Thus, injective types, including the universe and the type of propositions, cannot
have nontrivial apartness relations.

This may be seen as an internal version of Kocsis’ result that MLTT does not
define any non-trivial apartness relation on a universe (Kocsis uses a parametricity
argument).

▶ Rice-like theorem: Injective types have no non-trivial decidable properties.

Thm. If an injective type has a decomposition, then weak excluded middle holds.
A decomposition of a type X is defined to be a function f : X → 2 such that we
have x0 : X and x1 : X with f x0 = 0 and f x1 = 1.
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Future work
▶ Generalize to a factorization system of embeddings (↪→) and fiberwise injective

maps ( ).

X D

Y E

A B

Σ(b : B), (f −1(b) → U)
a 7→ (f a, λw .(a,refl) = w)

f

pr1

▶ Finish our preprint ⌣

For now, see the TypeTopology/Agda development: https:
//www.cs.bham.ac.uk/~mhe/TypeTopology/InjectiveTypes.index.html

Thank you!
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