Y is not typable in AU

and neither are ©, Q

Herman Geuvers

Radboud University Nijmegen & TUE
jww Joep Verkoelen

June 12, 2025
TYPES

Glasgow

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU

Why fixed-point combinators?

In untyped A-calculus, a fixed-point combinator F gives you a fixed
point of every term M

FM =3 M(FM).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 2 /19

Why fixed-point combinators?

In untyped A-calculus, a fixed-point combinator F gives you a fixed
point of every term M

FM =3 M(FM).

Why is this useful?
Solve recursive equations! E.g. is there an M such that

M x =g if (Zero? x) then 1 else Mult x (M (Pred x))?

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 2 /19

Why fixed-point combinators?

In untyped A-calculus, a fixed-point combinator F gives you a fixed
point of every term M

FM =3 M(FM).

Why is this useful?
Solve recursive equations! E.g. is there an M such that

M x =g if (Zero? x) then 1 else Mult x (M (Pred x))?

Yes: take
M = F (Am.)\x.if (Zero? x) then 1 else Mult x (m (Pred x)),
where F is your favourite fixed-point combinator.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 2 /19

Your favorite fixed point combinator?

Y = M.(Ax.f(xx))(Ax.f (xx))
© = (Mxf.f(xxf))(Axf.f(xxf))

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 3/19

Your favorite fixed point combinator?

Y = M.(Ax.f(xx))(Ax.f (xx))
(M f.f(xxf))(Axf.f(xxf))

@
I

L = M.(Axx(Apq.f(apq))x)(Ay.yy)

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 3/19

Your favorite fixed point combinator?

Y = M.(Ax.f(xx))(Ax.f (xx))
© = (MAxf.f(xxf))(Axf.f(xxf))
L = M.(xx(Apq.f(gpq))x)(A\y.yy)

Writing Mr :== Apq.f (gpq), w := Ay.y y, we have
Lf =3 wMrw
=B Mf I\/Ifw
=5 f(wMrw)

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 3/19

Your favorite fixed point combinator?

Y = M.(Ax.f(xx))(Ax.f (xx))
© = (MAxf.f(xxf))(Axf.f(xxf))
L = M.(Axx(Apq.f(apq))x)(Ay.yy)

Writing Mr :== Apq.f (gpq), w := Ay.y y, we have
Lf =3 wMrw
=B Mf I\/Ifw
=5 f(wMrw)
® [is typable in AU.
® Y and © and Q (= ww) are not typable in \U.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 3/19

What is AU?

AU is higher order predicate logic over polymorphic domains: two
impredicative sorts on top of eachother.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 4 /19

What is AU?

AU is higher order predicate logic over polymorphic domains: two
impredicative sorts on top of eachother.
More precisely:

® x: 0, 0:A (In Rocq: Prop: Type;, Type; : Type,)

® x is the impredicative type of formulas, giving higher order
predicate logic

e []is the impredicative type of data types, giving, e.g.
nat := Mk:0.k — (k — k) — k of type OJ.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 4 /19

What is AU?

AU is higher order predicate logic over polymorphic domains: two
impredicative sorts on top of eachother.
More precisely:
® x: 0, 0:A (In Rocq: Prop: Type;, Type; : Type,)
® x is the impredicative type of formulas, giving higher order
predicate logic

[J is the impredicative type of data types, giving, e.g.
nat := Mk:0.k — (k — k) — k of type OJ.

AU also allows quantification over [:

we have Mk:O.p 1 * (for ¢ : *).

AU~ is AU without quantification over .

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 4 /19

Inconsistency of AU

e Girard 1972: AU is inconsistent (and therefore \x, with * : %)
is inconsistent.
That is: there is a closed term M of type 1 :=lNa : %.a:

FM: 1.

e NB. aterm M : L does not have a normal form.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 5/19

Inconsistency of AU

e Girard 1972: AU is inconsistent (and therefore \x, with * : %)
is inconsistent.
That is: there is a closed term M of type 1 :=lNa : %.a:

FM: 1.

e NB. aterm M : L does not have a normal form.

® Question (Girard): is AU~ also inconsistent? Answer
(Coquand 1994): yes, AU~ is also inconsistent.

® Hurkens (1995): a short proof of inconsistency of AU™, i.e..
one can actually observe the term M and play with it.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 5/19

What can we compute in AU?

® Howe 1987 (based on Coquand’s 1986 analysis of Girard's
proof) transformed M : L into a term My with

ok fa—albk Mr:a.

® Howe showed (in A\x) that from Mf a looping combinator can
be defined: a family of terms {L,}nen such that

Lnf=pf(Lotif).

NB. This is enough to define all partial recursive functions.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 6 /19

What can we compute in AU?

® Howe 1987 (based on Coquand’s 1986 analysis of Girard's
proof) transformed M : L into a term My with

ok fa—albk Mr:a.

® Howe showed (in A\x) that from Mf a looping combinator can
be defined: a family of terms {L,}nen such that

Lnf=pf(Lotif).

NB. This is enough to define all partial recursive functions.

® A similar construction can be carried out in AU and AU~
(Coquand and Herbelin 1994).

® G. and Pollack (in 1995) showed that the inconsistency proof
of Hurkens yields a looping combinator {L,},en in AU~ (see
Barthe and Coquand 2006).

So we can do everything in AU™?

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 6 /19

What can we not compute in AU?

® Are all untyped A-terms typable in AU?

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 7 /19

What can we not compute in AU?

® Are all untyped A-terms typable in AU? No

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 7 /19

What can we not compute in AU?

® Are all untyped A-terms typable in AU? No

® |s there a fixed point combinator in AU?

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 7 /19

What can we not compute in AU?

® Are all untyped A-terms typable in AU? No

® |s there a fixed point combinator in AU? Don't know...

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 7 /19

What can we not compute in AU?

® Are all untyped A-terms typable in AU? No

® |s there a fixed point combinator in AU? Don't know...

To be precise: AU is the following Pure Type System.

S x0OA
AU | A +x:0O00:A
R (%), (O,%), (A, %), (0,0),(A,0)

If you know Rocq:

S Prop, Typeq, Type,

A Prop : Typey, Type;y : Type,

R (Prop, Prop), (Typey, Prop), (Types, Prop),
(Typey, Type1), (Typey. Type;)

AU

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 7 /19

® We don't give the full typing rules.

® We divide the set of variables V into three disjoint sets

var*, var” and var®.

® \We use standard characters:
var® = {X,}/,Z, B ‘}Y

var” = {a, B,7,...},
varA = {kl, k2, k3, .. }
So a variable that lives in a type o : « is typically x, y or z.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 8 /19

We define the syntactic categories Kinds (K1, K2), Constructors
(P, Q) and Proof terms (p, q). We also introduce Types (o, T)
(where Types C Constructors).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 9 /19

We define the syntactic categories Kinds (K1, K2), Constructors
(P, Q) and Proof terms (p, q). We also introduce Types (o, T)
(where Types C Constructors).

Kinds K = k| x| K—=K|Nk:OK
Constructors P 1= a|Aa:K.P|PP
| \k:O.P | PK

| P— P | Na:K.P

Types o = o—o|MNa:K.o
Proof terms g == x| Ax:0.9|qgq
| \a:K.q | gP
| \k:O.q | gK

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 9 /19

AU schematically:

Constructors Kinds
Proof terms | Types

P.Q 'K : O(Type;)
p,q Lo, T : x(Prop)
X, Y,z 01,57’}/ k15k2ak3

AX:0.q, gp
M:K.g, gP | a:K.Q, QP
Mk:O.g, gK | Xk:OOP, PK
c—71,MNa:Ko | K— K, lNk:OK

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 10 / 19

AU schematically:

Constructors Kinds
Proof terms | Types
P.Q 'K : O(Type;)
p,q Lo, T : x(Prop)
X, ¥,z O[,ﬁ,’)/ k]_,kz,k3
AX:0.q, gp
M:K.g, gP | a:K.Q, QP
Mk:O.g, gK | Xk:OOP, PK

o—=71, MNa:K.o

K= K, Nk:0.K

LEMMA

® Everything to the right of Proof terms is normalizing.

® Type checking is decidable in AU.

Herman Geuvers

June 12, 2025 TYPES Glasgow

Y is not typable in AU

10 / 19

Erasure from AU to untyped A-calculus

For g a proof term of AU, we define the erasure of g, denoted by

|t| as follows.
x| = x
[Axiopl = Axlpl |pal = |pllq]
[Aa:K.p| = |p| PRl = Ip|
[Ak:O.p| = |p| lpK|l = |p|

DEFINITION

The untyped lambda term M is typable in AU if there exist ', g, o
such that
lEq:o:% and |q| = M.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 1 /19

Main result

PROPOSITION
The terms €2, Y and © are not typable in AU.

This result comes as a corollary of a more general result:

THEOREM

Double self-application is not possible in AU.

Here we mean with “double self-application” a term g : o : * such
that

gl = (Ax-M)(Ay.N)
and M contains a sub-term x x and N contains a sub-term y y.

So the erasure of a double self-application looks like this:

lgl = (Ax....xx..)(Ay....yy...).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 12 /19

Parse trees of types

A type o in normal form is of one of the following two forms (V
and Vor T may be empty).

e Nv:V.r— p

e NvV:V.aT

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 13 /19

Parse trees of types

A type o in normal form is of one of the following two forms (V
and Vor T may be empty).

e Nv:V.r— p

e NvV:V.aT
We extend the notion of parse tree of a type o, known from
Urzyczyn 1997 for system Fw.

DEFINITION

We define the parse tree of a type o (written pt(o)) as follows.
nv: Vv
pt(NV: V.or —p) =

pt(7) pt(p)

—

pt(Nv: V.aT) = Nv:V.aT

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 13 /19

Analysing the parse trees of a type

DEFINITION

® The left-terminal path of pt(o), ltp(pt(c)) is the left-most
path in pt(c) that ends in a node labelled MV : V.o T.

® The variable oo we arrive at is called the head variable of the
type o, hv(o).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 14 /19

Analysing the parse trees of a type

® The left-terminal path of pt(o), ltp(pt(c)) is the left-most
path in pt(c) that ends in a node labelled MV : V.o T.

® The variable oo we arrive at is called the head variable of the
type o, hv(o).

DEFINITION

For o, 7 types o < 7 (o is contained in 7), is defined by
NvVpe =< Nw:W.p[T/V],

where the variables in w do not occur free in o.

The containment relation is reflexive and transitive.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 14 /19

Analysing the parse trees of a type

® The left-terminal path of pt(o), ltp(pt(c)) is the left-most
path in pt(c) that ends in a node labelled MV : V.o T.

® The variable oo we arrive at is called the head variable of the
type o, hv(o).

DEFINITION

For o, 7 types o < 7 (o is contained in 7), is defined by
NvVpe =< Nw:W.p[T/V],

where the variables in w do not occur free in o.
The containment relation is reflexive and transitive.
If o < 7, then length(ltp(o)) < length(ltp(7)).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 14 /19

Analysing self-application

LEMMA

If 0 < 7 and length(ltp(c)) < length(ltp(7)), then hv(o) is
bound at the root of pt(o).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU

Analysing self-application

If 0 < 7 and length(ltp(c)) < length(ltp(7)), then hv(o) is
bound at the root of pt(o).

PROPOSITION

If t: 0 :x and t contains a self application of x, with x : o, then
hv(o) is bound at the root of pt(o).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU

Analysing self-application

LEMMA

If 0 < 7 and length(ltp(c)) < length(ltp(7)), then hv(o) is
bound at the root of pt(o).

PROPOSITION

If t: 0 :x and t contains a self application of x, with x : o, then
hv(co) is bound at the root of pt(o).

PROOF

The general form of the self-application of x : ¢ in t is
xT (AW : W.xR).

We have xT : p1 — p2 and Aw : W.xR: p1 for some p1, po,
where 0 =< p1 — p2 and o < p;.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU

Analysing self-application

LEMMA
If 0 < 7 and length(ltp(c)) < length(ltp(7)), then hv(o) is
bound at the root of pt(o).

PROPOSITION
If t: 0 :x and t contains a self application of x, with x : o, then
hv(co) is bound at the root of pt(o).

PROOF
The general form of the self-application of x : ¢ in t is
xT (AW : W.xR).

We have xT : p1 — p2 and Aw : W.xR: p1 for some p1, po,
where 0 =< p1 — p2 and o < p;.

Also length(ltp(p1 — p2)) = length(ltp(p1)) + 1, so
length(ltp(o)) < length(ltp(p1)) < length(ltp(pr — p2)).
so hv(o) is bound at the root of pt(o). O

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU

No €2-like terms are typable in AU

THEOREM

In AU there is no typable term t such that

[t = (Ax....xx..)(Ay....yy...).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 16 / 19

No €2-like terms are typable in AU

THEOREM
In AU there is no typable term t such that

[t = (Ax....xx..)(Ay....yy...).

PROOF

We can assume that t has the following shape
P
q

— -
(Mo)(Aw: WAy ip...)),

with g: 0 — 7and p:o.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 16 / 19

No €2-like terms are typable in AU

THEOREM

In AU there is no typable term t such that

[t = (Ax....xx..)(Ay....yy...).

PROOF
We can assume that t has the following shape

a P

— -
(Mo)(Aw: WAy ip...)),

with g: 0 — 7and p:o.
@ The hv(o) is bound at the root of pt(o).
® The hv(p) is bound at the root of pt(p).
©o0=3MNw: V\7.p—>,u for some .
O Contradiction, so the term t cannot be well-typed. Ol

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 16 / 19

Conclusion

The following well-known untyped A-terms are not typable in AU:

Q = (Axxx)(Ax.xx),
Y = M.(Ax.f(xx))(Ax.f(xx)),
© = (Mxf.f(xxf)(Axf.f(xxf)).

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 17 /19

Conclusion

The following well-known untyped A-terms are not typable in AU:

Q = (Axxx)(Ax.xx),
Y = M.(Ax.f(xx))(Ax.f(xx)),
© = (Mxf.f(xxf)(Axf.f(xxf)).

e NB. the typable fixed-point combinator

L:=X.(Axx(Apqg.f(gpq))x)(Ay.yy)

does not have double self-application.

® That the typable version of L is not a fixed-point combinator
(but merely a looping-combinator) is due to the type
annotations in the A-abstractions.

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 17 /19

Further work / Open questions

® |s there a fixed-point combinator typable in AU?
* IsQ (Y, O, ..) typable in \x?

® Do other paradoxes give significant other looping
combinators?

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 18 /19

Questions?

Herman Geuvers June 12, 2025 TYPES Glasgow Y is not typable in AU 19 /19

