Matching (Co)patterns
with Cyclic Proofs

Lide Grotenhuis and Daniél Otten
University of Amsterdam

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
@000 [e]e) [e]e]e]e]e]e) [e]e]e]e} [e]e]

Teaser

Agda accepts the following functions that Rocq rejects:
swap-add : N — N — N,
0+ n,

swap-add mn := casem , ,
sucm’ — suc (swap-add nm’);

g:N—-N-—=N,
0~ 0,

gmmn := casem ,
sucm’ > casen

0 sucO,

sucn’ = gm’m’ +gn’n’.

Why do they terminate? Can we define them with induction?

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
0e00 (e]e] 000000 [e]e]e]e] (e}

Overview

We connect:
cyclic proof theory and recursive functions with (co)pattern matching.

Cyclic proof systems replace (co)induction rules with circular reasoning.

Example. Consider arithmetic with axioms:

— s Tsuc:
z4+0=2 " T +sucy =suc(x+y) °°
We have a cyclic proof: 042 —a'
N 0+sucz’ =suc(0+2') *° suc(0+2a')=suca’
0+0=0 ° 0+ sucz’ =suca’
case,,
O+zxz==x

with a cycle between the blue nodes.

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e] e} [e]e) [e]e]e]e]e]e) [e]e]e]e} [e]e]

Overview

We connect:
cyclic proof theory and recursive functions with (co)pattern matching.
Cyclic proof systems replace (co)induction rules with circular reasoning.

Good for proof search:
= (co)induction: guess a (co)induction hypothesis.

= cycles: generate until our current goal matches a previous goal;
check for progress.

The type theory implemented by proof assistants can be seen as cyclic:

Cyclic Proof ‘ Recursive Function
Fixpoint Formula (Co)inductive Type
Cycle Recursive Function Call

Soundness Conditions | Termination Checking

Conservativity Conclusion

Introduction Cyclic Proofs Type Theory
[e]e]

[eJe]e]] (e]e] 000000 [e]e]e]e]

Goals

Two main goals:
= Explain how the Curry-Howard correspondence can be extended to
cyclic proofs and recursive functions.
= Extend conservativity results that show that pattern matching can
be reduced to induction rules (with! and without? K).

LGoguen, McBride, McKinna 2006
2Cockx, Devriese, Piessens 2014

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [o) [e]e]e]e]e]e) [e]e]e]e} [e]e]

Soundness Condition

For a cyclic proof system we specify when cycles are allowed:

= we want to be restrictive enough to be sound;

= we want to be admissive enough to be complete, and easy to use.
This is called the soundness condition.

The global soundness condition is: for every infinite path we can
eventually trace an object that makes progress infinitely often.

Example. For arithmetic:
= objects: variables,

= progress: passing through a case distinction.

In general, checking the global soundness condition is PSPACE-complete.

Introduction Cyclic Proofs Type Theory Conservativity
[e]e]e]e} (o]) [e]e]e]e]e]e) [e]e]e]e}

Two Styles

Cyclic proof systems generally fall into two styles:

= systems where the sort is (co)inductive:

natural numbers, ordinals, streams, ...

= systems where the formulas contain fixpoints:

R* is the smallest relation such that
xRy <+ x=yV I/ (zRx’ Nx'R"y),

We want a system that generalises both styles.

Dependent type theory is a natural candidate:

= types can be seen as both sorts and formulas.

Conclusion
(e}

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) 00000 [e]e]e]e} [e]e]

Termination Checking

What are cyclic proofs in type theory? General idea:
= A sequent I' - a : A gives a function sending I" to a : A.

= A cycle uses the function inside the function (recursive call).

Proof assistants (Agda, Rocq, ...) implement recursive calls.

To ensure termination, we check:
= Roqr: structural recursion. This is conservative over induction
(with® and without* K).
= Agda: size-change termination. Conservativity is not known.
These conditions are sufficient but not necessary (halting problem).

3Goguen, McBride, McKinna 2006
4Cockx, Devriese, Piessens 2014

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) (o] lelele]e) [e]e]e]e} [e]e]

Structural Recursion

One input is structurally smaller in every recursive call:

Example. The Fibonacci function:

fib: N — N,

0—0
fibn := casen ’

, , 01,
sucn’ > casen

sucn” s fibn” + fibn'.

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) [e]e] Telele) [e]e]e]e} [e]e]

Size-change termination

Every infinite sequence of calls eventually has a path that decreases
infinitely often:

Example.

swap-add : N — N — N,

0 n,

swap-add mn := casem , ,
sucm’ > suc (swap-addnm’).

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) [e]e]e] lele) [e]e]e]e} [e]e]

Size-change Termination

Every infinite sequence of calls eventually has a path that decreases
infinitely often:

Example.
g:N—=->N-—=N,
00,

gmmn = casem ,
sucm’ > casen

0+ sucO,
sucn’ > gm’ m' +gn'n’.

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) [e]e]e]e] o] [e]e]e]e} [e]e]

Size-change Termination

Every infinite sequence of calls eventually has a path that decreases
infinitely often.

This corresponds to the PSPACE-complete global soundness condition.

In cyclic proof theory, there are results showing that in some cases, this
condition is conservative over induction:

= For first-order pi-calculus with ordinal approximations.®
= For natural numbers.®

We hope to prove a similar result for type theory.

5Sprenger, Dam 2003
6L eigh, Wehr 2023

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) [e]e]e]e]e]) [e]e]e]e} [e]e]

Unification

For inductive families such as =-types, pattern matching uses unification.

Example. With normal unification, axiom K is provable:

K:(C:a=a— Type) = Crefl » (a:a=a) = Ca,
KCca:=casea{refl & c.

Without K we have to restrict unification.

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) [e]e]e]e]e]e) @000 [e]e]

Conservativity

We are trying to combine ideas:
= Type theory: how to deal with unification and axiom K.
= Cyclic proof theory: how to deal with the global soundness condition.

The main idea is that we unfold the definitions some more.

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) [e]e]e]e]e]e) [o] le]e} [e]e]

Unfold the Tree

Example.
swap-add : N — N — N,
0 n,

swap-add mn := casem , ,
sucm’ - suc (swap-add nm”).

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) [e]e]e]e]e]e) [e]e] e} [e]e]

Unfold the Tree

Example. g: N — N — N,

>
i e
n z n

S
n ~ n

/ m
m/ m//

/ m/ \ m//
m m//
"

\ / n
n/ n//

S

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) [e]e]e]e]e]e) [e]ele]] [e]e]

Algorithm

We have an algorithm to determine how much to unfold:

= Start unfolding with annotations to track inputs.
The annotations are based on the Safra construction, which makes
nondeterministic w-automata deterministic.

= If annotations start repeating, then we can stop.

= Such an annotated function corresponds to a reset proof, where we
have an equivalent local soundness condition.

= The annotations give us an idea of the order in which to apply
induction, and the local condition ensures structurally smaller input.

= By following the annotations, we add induction hypotheses.

= We replace recursive calls with appeals to induction hypotheses.

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) [e]e]e]e]e]e) [e]e]e]e} [le]

Conclusion

To summarize:

s The Curry-Howard correspondence extends to recursive functions
and cyclic proofs.

= Cyclic proof theory can be useful for type theory.

= Agda admits more functions than Rocr. Conservativity is only
known for Rocr, we are trying to prove it for Agda.

Our approach is a bit more general than we have seen here:
mix of arbitrary inductive families and mutually recursive functions.

In future work it would be interesting to look at copattern matching.

Introduction Cyclic Proofs Type Theory Conservativity Conclusion
0000 (e]e] 000000 [e]e]e]e] (o] J

Literature

Abel, Cocgx 2020 - Elaborating Dependent Copattern Matching

Abel, Pientka, Thibodeau, Setzer 2013 - Copatterns: Programming Infinite
Structures by Observations Abel, Pientka 2016 - Well-founded Recursion with
Copatterns and Sized Types

Afshari, Leigh 2027 - Cut-free Completeness for Modal Mu-Calculus Cockx
2017 - Dependent Pattern Matching and Proof-relevant Unification

Cockx, Devriese, Piessens 2014 - Pattern Matching Without K

Cockx, Devriese 2016 - Eliminating Dependent Pattern Matching Without K
Goguen, McBride, McKinna 2006 - Eliminating Dependent Pattern Matching
McBride, Goguen, McKinna 2004 - A Few Constructions on Constructors
Leigh, Wehr 2023 - Unravelling Cyclic First-Order Arithmetic

Sprenger, Dam 2003 - On the Structure of Inductive Reasoning, Circular and
Tree-shaped Proofs in the mu-Calculus

Thibodeau 2020 - An Intensional Type Theory of Coinduction using Copatterns
Wehr 2023 - Representation Matters in Cyclic Proof Theory

	Introduction
	Cyclic Proofs
	Type Theory
	Conservativity
	Conclusion

