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Teaser

Agda accepts the following functions that Rocq rejects:
swap-add : N — N — N,
0+ n,

swap-add mn := casem , ,
sucm’ — suc (swap-add nm’);

g:N—-N-—=N,
0~ 0,

gmmn := casem ,
sucm’ > casen

0 sucO,

sucn’ = gm’m’ +gn’n’.

Why do they terminate? Can we define them with induction?
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Overview

We connect:
cyclic proof theory and recursive functions with (co)pattern matching.

Cyclic proof systems replace (co)induction rules with circular reasoning.

Example. Consider arithmetic with axioms:

— s Tsuc:
z4+0=2 " T +sucy =suc(x+y) °°
We have a cyclic proof: 042 —a'
N 0+sucz’ =suc(0+2') *° suc(0+2a')=suca’
0+0=0 ° 0+ sucz’ =suca’
case,,
O+zxz==x

with a cycle between the blue nodes.
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Overview

We connect:
cyclic proof theory and recursive functions with (co)pattern matching.
Cyclic proof systems replace (co)induction rules with circular reasoning.

Good for proof search:
= (co)induction: guess a (co)induction hypothesis.

= cycles: generate until our current goal matches a previous goal;
check for progress.

The type theory implemented by proof assistants can be seen as cyclic:

Cyclic Proof ‘ Recursive Function
Fixpoint Formula (Co)inductive Type
Cycle Recursive Function Call

Soundness Conditions | Termination Checking
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Goals

Two main goals:
= Explain how the Curry-Howard correspondence can be extended to
cyclic proofs and recursive functions.
= Extend conservativity results that show that pattern matching can
be reduced to induction rules (with! and without? K).

LGoguen, McBride, McKinna 2006
2Cockx, Devriese, Piessens 2014
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Soundness Condition

For a cyclic proof system we specify when cycles are allowed:

= we want to be restrictive enough to be sound;

= we want to be admissive enough to be complete, and easy to use.
This is called the soundness condition.

The global soundness condition is: for every infinite path we can
eventually trace an object that makes progress infinitely often.

Example. For arithmetic:
= objects: variables,

= progress: passing through a case distinction.

In general, checking the global soundness condition is PSPACE-complete.
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Two Styles

Cyclic proof systems generally fall into two styles:

= systems where the sort is (co)inductive:

natural numbers, ordinals, streams, ...

= systems where the formulas contain fixpoints:

R* is the smallest relation such that
xRy <+ x=yV I/ (zRx’ Nx'R"y),

We want a system that generalises both styles.

Dependent type theory is a natural candidate:

= types can be seen as both sorts and formulas.

Conclusion
(e}
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Termination Checking

What are cyclic proofs in type theory? General idea:
= A sequent I' - a : A gives a function sending I" to a : A.

= A cycle uses the function inside the function (recursive call).

Proof assistants (Agda, Rocq, ...) implement recursive calls.

To ensure termination, we check:
= Roqr: structural recursion. This is conservative over induction
(with® and without* K).
= Agda: size-change termination. Conservativity is not known.
These conditions are sufficient but not necessary (halting problem).

3Goguen, McBride, McKinna 2006
4Cockx, Devriese, Piessens 2014
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Structural Recursion

One input is structurally smaller in every recursive call:

Example. The Fibonacci function:

fib: N — N,

0—0
fibn := casen ’

, , 01,
sucn’ > casen

sucn” s fibn” + fibn'.
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Size-change termination

Every infinite sequence of calls eventually has a path that decreases
infinitely often:

Example.

swap-add : N — N — N,

0 n,

swap-add mn := casem , ,
sucm’ > suc (swap-addnm’).
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Size-change Termination

Every infinite sequence of calls eventually has a path that decreases
infinitely often:

Example.
g:N—=->N-—=N,
00,

gmmn = casem ,
sucm’ > casen

0+ sucO,
sucn’ > gm’ m' +gn'n’.
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Size-change Termination

Every infinite sequence of calls eventually has a path that decreases
infinitely often.

This corresponds to the PSPACE-complete global soundness condition.

In cyclic proof theory, there are results showing that in some cases, this
condition is conservative over induction:

= For first-order pi-calculus with ordinal approximations.®
= For natural numbers.®

We hope to prove a similar result for type theory.

5Sprenger, Dam 2003
6L eigh, Wehr 2023
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Unification

For inductive families such as =-types, pattern matching uses unification.

Example. With normal unification, axiom K is provable:

K:(C:a=a— Type) = Crefl » (a:a=a) = Ca,
KCca:=casea{refl & c.

Without K we have to restrict unification.
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Conservativity

We are trying to combine ideas:
= Type theory: how to deal with unification and axiom K.
= Cyclic proof theory: how to deal with the global soundness condition.

The main idea is that we unfold the definitions some more.
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Unfold the Tree

Example.
swap-add : N — N — N,
0 n,

swap-add mn := casem , ,
sucm’ - suc (swap-add nm”).



Introduction Cyclic Proofs Type Theory Conservativity Conclusion
[e]e]e]e} [e]e) [e]e]e]e]e]e) [e]e] e} [e]e]

Unfold the Tree

Example. g: N — N — N,

>
i e
n z n

S
n ~ n

/ m
m/ m//

/ m/ \ m//
m m//
"

\ / n
n/ n//

S
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Algorithm

We have an algorithm to determine how much to unfold:

= Start unfolding with annotations to track inputs.
The annotations are based on the Safra construction, which makes
nondeterministic w-automata deterministic.

= If annotations start repeating, then we can stop.

= Such an annotated function corresponds to a reset proof, where we
have an equivalent local soundness condition.

= The annotations give us an idea of the order in which to apply
induction, and the local condition ensures structurally smaller input.

= By following the annotations, we add induction hypotheses.

= We replace recursive calls with appeals to induction hypotheses.
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Conclusion

To summarize:

s The Curry-Howard correspondence extends to recursive functions
and cyclic proofs.

= Cyclic proof theory can be useful for type theory.

= Agda admits more functions than Rocr. Conservativity is only
known for Rocr, we are trying to prove it for Agda.

Our approach is a bit more general than we have seen here:
mix of arbitrary inductive families and mutually recursive functions.

In future work it would be interesting to look at copattern matching.
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