Compositional Memory Management in the
A-calculus

Or: A Compositional Semantics for Explicit Naming

Sky Wilshaw, Graham Hutton

School of Computer Science, University of Nottingham

12th June 2025

let x =1+ 2in print (x + x)
—_——
scope of x

let x =1+ 2in print (x + x)
—_——
scope of x

With explicit naming, we use explicit operations to
manipulate names:

bind x to 1 + 2 in print (read x + read x); free x
Names are first-class citizens:

bind x to 4 in x returns x, not 4

Names as pointers

In explicit naming, names are like pointers

 bind x to 7 allocates memory to hold the value 7

« read x dereferences the pointer x

« free x deallocates the memory pointed to by x
Important: The value bound to a name cannot change

(so names are like ‘immutable pointers’)

Explicit naming is a fragment of manual memory management

We track bindings using a heap, mapping names to values

The heap is updated during every computation step

¢ ¥ ¢ 3

heap
{}

{x » 7}
{x— 7}
{x— 7}

{}

expression

bind x to 7 in print (read x); free x
print (read x); free x
print 7; free x 7 is printed

free x

What if we free x before reading from it?

heap expression

{} bind x to 7 in free x; print (read x)
w {x 7} freex; print (read x)
- {} print (read x) can’t continue!

Behaviour is very sensitive to order of evaluation

The heap is threaded through the computation, so the
semantics is non-compositional

How can we fix this?

Currently, our evaluator is a partial function of type
Expr — Heap — Heap X Value
We can write this as
Expr — T Value where T = Heap — Heap X (—)

Can we replace T with a better (more compositional) monad?

How can we fix this?

Currently, our evaluator is a partial function of type
Expr — Heap — Heap X Value
We can write this as
Expr — T Value where T = Heap — Heap X (—)
Can we replace T with a better (more compositional) monad?

U = Context — (Heap — Heap) X (—)

like a fixed heap effect on the heap

Crucially: The context isn't modified by heap effects, and
effects are composed using their monoid structure.

This semantics is equivalent to the stateful semantics!

H ifxedomH

effr(read x)(H) = .
1t otherwise

H ifH=H,x~v
effr(free x)(H) =

1 otherwise

effr(e; ey) = effp(e,) o effp(e;)

The same context I is used for both e; and e,

« In explicit naming, we manipulate names manually using
explicit operations

« Explicit naming can be viewed as a fragment of manual
memory management

« The evaluator can be thought of as a monadic function
Expr — T Value

« By replacing T with a ‘better’ monad U we reduce
dependence on state

« Paper coming soon!

Thank you!

Equivalence theorem

H:e|| H :v &
Awf,w=v A f(H)=H A tr(H)Fe | f:w)

—— H-VAR H-LAM
H:x | H:x H:Ax.e J H : Ax.e

H,:e; J Hy : Ax.e H,:e, J Hy: v
(Hzj,x—>v):e | Hy: VU

H, e ey J Hy : V'

H-APP

Hy:el (Hyp,xP0v):x
H, :xe § (H,x—1v):v

H-READ

leelquzv Hzler(H3,XI—>U’)Zx
H, :eq; freee, | Hy: v

H-FREE

I'x)=w x € domT
: E-VAR : E-LAM
T'tx {id: (x~ w) IF'HAx.e § id: Ax.e

The, U fi : AMxe The, I fr:w
T,xwhkel fr:w

I'beje; I fro0f0fi:w

E-APP

kel f:(xH w)
F'kxe J readxo f:w

E-READ

'te, U fi:w 'tey, I fH:(x—w)
T'ke;; freee, | freexofoof; i w

E-FREE

