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let x =1+ 2in print (x + x)
—_——
scope of x



let x =1+ 2in print (x + x)
—_——
scope of x

With explicit naming, we use explicit operations to
manipulate names:

bind x to 1 + 2 in print (read x + read x); free x
Names are first-class citizens:

bind x to 4 in x returns x, not 4



Names as pointers

In explicit naming, names are like pointers

 bind x to 7 allocates memory to hold the value 7

« read x dereferences the pointer x

« free x deallocates the memory pointed to by x
Important: The value bound to a name cannot change

(so names are like ‘immutable pointers’)

Explicit naming is a fragment of manual memory management



We track bindings using a heap, mapping names to values

The heap is updated during every computation step
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{x » 7}
{x— 7}
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{}

expression

bind x to 7 in print (read x); free x
print (read x); free x
print 7; free x 7 is printed

free x




What if we free x before reading from it?

heap  expression

{} bind x to 7 in free x; print (read x)
w {x 7} freex; print (read x)
- {} print (read x) can’t continue!

Behaviour is very sensitive to order of evaluation

The heap is threaded through the computation, so the
semantics is non-compositional



How can we fix this?

Currently, our evaluator is a partial function of type
Expr — Heap — Heap X Value
We can write this as
Expr — T Value where T = Heap — Heap X (—)

Can we replace T with a better (more compositional) monad?



How can we fix this?

Currently, our evaluator is a partial function of type
Expr — Heap — Heap X Value
We can write this as
Expr — T Value where T = Heap — Heap X (—)
Can we replace T with a better (more compositional) monad?

U = Context — (Heap — Heap) X (—)

like a fixed heap  effect on the heap

Crucially: The context isn't modified by heap effects, and
effects are composed using their monoid structure.

This semantics is equivalent to the stateful semantics!



H ifxedomH

effr(read x)(H) = .
1t otherwise

H ifH=H,x~v
effr(free x)(H) =

1 otherwise

effr(e; ey) = effp(e,) o effp(e;)

The same context I is used for both e; and e,



« In explicit naming, we manipulate names manually using
explicit operations

« Explicit naming can be viewed as a fragment of manual
memory management

« The evaluator can be thought of as a monadic function
Expr — T Value

« By replacing T with a ‘better’ monad U we reduce
dependence on state

« Paper coming soon!

Thank you!



Equivalence theorem

H:e|| H :v &
Awf,w=v A f(H)=H A tr(H)Fe | f:w)
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