
Fair termination for resource-aware active

objects

Francesco Dagnino*, Paola Giannini‡, Violet Ka I Pun†, Ulises Torrella†

June 12, 2025, TYPES 2025

* DIBRIS, Università di Genova, Italy

‡ DiSSTE, Università del Piemonte Orientale, Italy

† Western Norway University of Applied Sciences, Norway

Resource Aware Active Objects

Resource aware active objects

We work on a resource aware active object language.

Goal

• model concurrent systems

• where resources can be limited: linear, affine, bounded, etc.

• guarantee that the implementation has a correct use of

resources

1/14

Resource aware active objects

Resources

Actor

Threads

e

e

...

e

Resources

Actor "a"

Threads

e

e

...
e

2/14

Resource aware active objects

Resources

Actor

Threads

e

e

...

hold r

Resources

Actor "a"

Threads

e

e

...
e

r

2/14

Resource aware active objects

Resources

Actor

Threads

release x

e

...

hold r

Resources

Actor "a"

Threads

e

e

...
e

r

λ[x]

2/14

Resource aware active objects

Resources

Actor

Threads

release x

a!m(x)

...

hold r

Resources

Actor "a"

Threads

e

e

...
e

r

λ[x]

f ← a!m(λ[x])

2/14

Modelling resources with grades

Resource aware active objects

Grades: Extra annotations on our syntax and type system

T g , xg , hold g r

• quantitatively: linearly, at most once, a bounded amount of

times.

• qualitatively: privately or publicly, etc.

3/14

Subtractive grade algebra

A grade algebra parametrizes resource-awareness:

It is a structure G = ⟨|G |,≤,+, 0,−⟩ where:

1. ⟨|G |,≤,+, 0⟩ is an ordered commutative monoid

2. for all g ≤ 0 =⇒ g = 0

3. − is a partial binary function such that forall g , h, h′ ∈ |G |:
3.1 if h − g is defined and h ≤ h′ then h′ − g is defined and

monotone.

3.2 g + h′ ≤ h if and only if h − g is defined and h′ ≤ h − g

4/14

Subtractive grade algebra

A grade algebra parametrizes resource-awareness:

It is a structure G = ⟨|G |,≤,+, 0,−⟩ where:

1. ⟨|G |,≤,+, 0⟩ is an ordered commutative monoid

2. for all g ≤ 0 =⇒ g = 0

3. − is a partial binary function such that forall g , h, h′ ∈ |G |:
3.1 if h − g is defined and h ≤ h′ then h′ − g is defined and

monotone.

3.2 g + h′ ≤ h if and only if h − g is defined and h′ ≤ h − g

4/14

Grades - Examples

Linear grade algebra

The linear modality is defined by ⟨|Lin|,≤,+, 0,−⟩ is defined by

|Lin| = {0, 1,∞}, with 0 ≤ ∞ and 1 ≤ ∞.

0+ x = x = x + 0

1 + 1 =∞
∞+ x =∞ = x +∞

x − 0 = x

1− 1 = 0

∞− x =∞

Privacy grade algebra

Is given by a join semi-lattice. With + = ∨ and − defined by

h − g = h ⇐⇒ g ≤ h.

5/14

Resource aware active objects

Some characteristics of our

calculus

• Actors hold resources only

accessible to their executing

threads.

• Futures are first-class

citizens, but linear.

• Non-deterministic branching.

• Recursion.

Actor a {

ρ: [r^g]

m1 (...) {...}

m2 (...) {...}

...

}

6/14

The semantics

The expression level is the code that is executed by actors.

The expression level

e ::= a!m(ve) | ve?
| hold g r | release g ve

| let x = e1 in e2 | e1 ⊕ e2

| return ve

ve ::= xg | x | v
v ::= rg | f | unit

The behaviour of expressions is defined by a labeled relation:

e
w−→
r

e ′

7/14

The semantics

The process level

P ::= a•[λ | e]f | a◦[λ | e]f

| idlea |
| f ← v | f ← a!m(v)

| P ∥ Q

ρ ::= rg

Φ ::= a : ρ

σ ::= Φ || P

8/14

The semantics

The process level

P ::= a•[λ | e]f | a◦[λ | e]f

| idlea |
| f ← v | f ← a!m(v)

| P ∥ Q

ρ ::= rg

Φ ::= a : ρ

σ ::= Φ || P

P ∥ Q ▷◁ Q ∥ P if fp(P) ∩ fr(Q) = ∅
and fp(Q) ∩ fr(P) = ∅

idlea ∥ a◦[λ | e]f ▷ a•[λ | e]f

a•[λ | e]f ▷ idlea ∥ a◦[λ | e]f if λ | e −−−→
f ′←v

8/14

The semantics

The process level

P ::= a•[λ | e]f | a◦[λ | e]f

| idlea |
| f ← v | f ← a!m(v)

| P ∥ Q

ρ ::= rg

Φ ::= a : ρ

σ ::= Φ || P

(hold)

λ | e −−−−→
hold rg

λ′ | e ′

Φ, a : ρ, rh || a•[λ | e]f −→ Φ, a : ρ, rh−g || a•[λ′ | e ′]f

8/14

The Type System

The type system

Contexts

Γ ::= x : T Σ ::= f : Fut⟨T ,Φ⟩ Φ ::= a : ρ

Types

T ::= Unit | rg | Fut⟨T ,Φ⟩

To type an expression we consider resources going in and out:

Φ ⊢ e : T ; Φ′

9/14

The type system

Contexts

Γ ::= x : T Σ ::= f : Fut⟨T ,Φ⟩ Φ ::= a : ρ

Types

T ::= Unit | rg | Fut⟨T ,Φ⟩

To type an expression we consider resources going in and out:

Φ ⊢ e : T ; Φ′

9/14

The type system

Contexts

Γ ::= x : T Σ ::= f : Fut⟨T ,Φ⟩ Φ ::= a : ρ

The full typing judgement for expressions:

Φ; Σ; Γ ⊢a e : T ; Φ′

The typing judgement for processes:

Φ; Σ ⊢ P :: Σ′

10/14

The type system

Contexts

Γ ::= x : T Σ ::= f : Fut⟨T ,Φ⟩ Φ ::= a : ρ

The full typing judgement for expressions:

Φ; Σ; Γ ⊢a e : T ; Φ′

The typing judgement for processes:

Φ; Σ ⊢ P :: Σ′

10/14

The type system

Contexts

Γ ::= x : T Σ ::= f : Fut⟨T ,Φ⟩ Φ ::= a : ρ

One more thing:

The full typing judgement for expressions:

Φ; Σ; Γ ⊢na e : T ; Φ′

The typing judgement for processes:

Φ; Σ ⊢n P :: Σ′

A terminated configuration is only conformed of idle actors and

resolved messages (f ← v)

10/14

The type system

Typing a let expression must track resources:

(T-let)

Φ1; Σ1; Γ1 ⊢ma e1 : T
′; Φ′1 +Φ′2

Φ2 +Φ′1; Σ2; Γ2, x : T ′ ⊢na e2 : T ; Ψ2

Φ1 +Φ2; Σ1,Σ2; Γ1 + Γ2 ⊢1+n+m
a let x = e1 in e2 : T ; Φ′2 +Ψ2

Typing a parallel composition must control futures:

(T-par)

Φ1; Σ1 ⊢n P :: Σ′1,Σ
′′
1

Φ2; Σ2,Σ
′
1 ⊢m Q :: Σ′2

Φ1 +Φ2; Σ1,Σ2 ⊢n+m P ∥ Q :: Σ′2,mark(Σ′1),Σ
′′
1

dom(Σ′′1)

∩
dom(Σ2)

= ∅

11/14

The type system

Typing a let expression must track resources:

(T-let)

Φ1; Σ1; Γ1 ⊢ma e1 : T
′; Φ′1 +Φ′2

Φ2 +Φ′1; Σ2; Γ2, x : T ′ ⊢na e2 : T ; Ψ2

Φ1 +Φ2; Σ1,Σ2; Γ1 + Γ2 ⊢1+n+m
a let x = e1 in e2 : T ; Φ′2 +Ψ2

Typing a parallel composition must control futures:

(T-par)

Φ1; Σ1 ⊢n P :: Σ′1,Σ
′′
1

Φ2; Σ2,Σ
′
1 ⊢m Q :: Σ′2

Φ1 +Φ2; Σ1,Σ2 ⊢n+m P ∥ Q :: Σ′2,mark(Σ′1),Σ
′′
1

dom(Σ′′1)

∩
dom(Σ2)

= ∅

11/14

Soundness

We say that our system is correct if it is resource-safe.

Resource safe: every hold will be successful

Theorem (Subject reduction)

If Φ; Σ ⊢nΘ σ :: Σ′ and σ −→ σ′, then it exists Ψ,m,Ω′ such that

Ψ; Σ ⊢mΘ σ′ :: Ω′, where Ω′ = Σ′,mark(Ω′′) with Ω′′ fresh.

12/14

Soundness

We say that our system is correct if it is resource-safe.

Resource safe: every hold will be successful

Theorem (Subject reduction)

If Φ; Σ ⊢nΘ σ :: Σ′ and σ −→ σ′, then it exists Ψ,m,Ω′ such that

Ψ; Σ ⊢mΘ σ′ :: Ω′, where Ω′ = Σ′,mark(Ω′′) with Ω′′ fresh.

12/14

Soundness

Theorem (Weak termination)

If Φ; ∅ ⊢n σ :: Σ′ then there exists a reduction σ −→∗ σ′ such
that σ′ is terminated.

Theorem (Fair termination)

If Φ; ∅ ⊢n σ :: Σ′, then if σ −→ σ′ implies σ′ is weakly

terminating.

Well-typed configurations are fairly terminating,

=⇒ we know it can never be stuck,

=⇒ it’s resource-safe.

Moreover, it cannot be live-locked, and there cannot be orphan

messages.

13/14

Conclusion and Future work

We introduce an active object language for workflow modelling

with parametrized resource-awareness.

We implement a type system that guarantees that all modelled

workflow systems are resource-safe.

Future work:

• Make the system fully object-oriented

• Graded futures
Thanks for your attention,

questions?

14/14

Conclusion and Future work

We introduce an active object language for workflow modelling

with parametrized resource-awareness.

We implement a type system that guarantees that all modelled

workflow systems are resource-safe.

Future work:

• Make the system fully object-oriented

• Graded futures

Thanks for your attention,

questions?

14/14

Conclusion and Future work

We introduce an active object language for workflow modelling

with parametrized resource-awareness.

We implement a type system that guarantees that all modelled

workflow systems are resource-safe.

Future work:

• Make the system fully object-oriented

• Graded futures
Thanks for your attention,

questions?

14/14

	Resource Aware Active Objects
	Modelling resources with grades
	The Type System

