Fair termination for resource-aware active

objects

Francesco Dagnino*, Paola Giannini¥, Violet Ka | Punf, Ulises Torrellat

June 12, 2025, TYPES 2025

* DIBRIS, Universita di Genova, ltaly
1 DIiSSTE, Universita del Piemonte Orientale, Italy
1 Western Norway University of Applied Sciences, Norway

Resource Aware Active Objects

Resource aware active objects

We work on a resource aware active object language.
Goal

e model concurrent systems

e where resources can be limited: linear, affine, bounded, etc.

e guarantee that the implementation has a correct use of
resources

1/14

Resource aware active objects

Actor Actor "a"

Resources Threads Resources Threads

L (L
L) T (I

2/14

Resource aware active objects

Actor Actor "a"

Resources Threads Resources Threads

r/\\

[2

hold r

L) T (I

L ()

2/14

Resource aware active objects

Actor Actor "a"

N N
Resources Threads Resources Threads
r/\\ N
hold r — e
A[x]
4‘_ e —
—— release x — e
— e S— e

2/14

Resource aware active objects

Actor Actor "a"
N N
Resources Threads Resources Threads
r/\\ -
hold r — e
A[x]
NG —
I release x — e
—— am(x) — e

f — alm(A[x])

2/14

Modelling resources with grades

Resource aware active objects

Grades: Extra annotations on our syntax and type system
T8, x8 hold g r

e quantitatively: linearly, at most once, a bounded amount of
times.

e qualitatively: privately or publicly, etc.

3/14

Subtractive grade algebra

A grade algebra parametrizes resource-awareness:

It is a structure G = (|G|, <, +,0, —) where:

1. {|G|,<,+,0) is an ordered commutative monoid

2. forallg<0 = g=0

4/14

Subtractive grade algebra

A grade algebra parametrizes resource-awareness:

It is a structure G = (|G|, <, +,0, —) where:

1. {|G|,<,+,0) is an ordered commutative monoid
2. forallg<0 = g=0

3. — is a partial binary function such that forall g, h, b’ € |G]|:

3.1 if h— g is defined and h < h’ then h' — g is defined and
monotone.
32 g+ h < hifandonly if h— g is defined and ¥ < h—g

4/14

Grades - Examples

Linear grade algebra

The linear modality is defined by (|Lin|, <,+,0, —) is defined by
|Lin| = {0, 1,00}, with 0 < 0o and 1 < oo.

O+x=x=x+0 x—0=x
1+1=00 1-1=0
00+ X =00 =X+ 00 00 — X = 00

Privacy grade algebra
Is given by a join semi-lattice. With + =V and — defined by
h—g=h < g<h

5/14

Resource aware active objects

Some characteristics of our

calculus

Actor a {
e Actors hold resources only

: . : p: [rrgl
accessible to their executing
threads. mli (...) {...%}
e Futures are first-class m2 (...) {...}

citizens, but linear.

e Non-deterministic branching.

e Recursion.

6/14

The expression level is the code that is executed by actors.

The expression level
e u= alm(ve) | ve?
| hold g r|release g ve
| letx=eline2|el®e2

| return ve
ve = x8|x|v
v = r8|f|unit

The behaviour of expressions is defined by a labeled relation:

7/14

The process level

— (] f o f
P i= a|elf [#[]e] e
| idle? | B ® = T
| f+v|f<«alm(V) o o= 0| P
| Pll@

8/14

The process level

P = a*[\|e]f|a°[\]e]f o = TE
| idle? | o 1= 75
| <+ v|f<+ alm(V) o o[P
| Pl@
if fo(P) N fr(Q) =
PIQ=Q]P it fp(P)Nfr(Q) =10

and ip(Q) N fr(P) =10
idle? || a°[A | e]f b a®[\ | ¢]f
a*[\ | e]f pidle? || a°[A | e]f if A]e—

fl+v

8/14

The process level

P = a*[\|e]f|a°[\]e]f p = %
| idle? | o = T
;T(\Q/lzﬂ—a!m(v) - o P
Ae—— N |¢€
(s010) hold ré

S.2:p ([@[N] ef — B,aip, 7 [[a [N | €]

8/14

The Type System

The type system

Contexts

M=x:T Y o=f:Fut(T,d) ®u=37p

Types

T ::=TUnit | r® | Fut(T,)

9/14

The type system

Contexts

M=x:T Y o=f:Fut(T,d) ®u=37p

Types

T ::=TUnit | r® | Fut(T,)

To type an expression we consider resources going in and out:

dke: T;0

9/14

The type system

Contexts

M=x:T Y o= f:Fut(T,P) ®:=37p

The full typing judgement for expressions:

¢ X, e T; o’

10/14

The type system

Contexts

M=x:T Y o= f:Fut(T,P) ®:=37p

The full typing judgement for expressions:
¢, T, TH,e: T; ¢
The typing judgement for processes:

o:TFHP:Y

10/14

The type system

Contexts

MN=x:T Y o= f:Fut(T,P) ®:=37p

One more thing:
The full typing judgement for expressions:
o, L, THe: T, oY
The typing judgement for processes:
o, TP Y

A terminated configuration is only conformed of idle actors and
resolved messages (f < v)

10/14

The type system

Typing a let expression must track resources:

¢1; 21; |_1 |_gn ey : T/; (D/lJr(D/Q
Gy 4+ Yo Mo, x: T'Hl et T, Wy

(T-LET)
P+ Py; X1, %0 T+ Mo FFMHMlet x =g ine: T; &, + VU,

11/14

The type system

Typing a let expression must track resources:

G Ly MaFy et T/ 0 4 @
Gy 4+ Yo Mo, x: T'Hl et T, Wy
P+ Py; X1, %0 T+ Mo FFMHMlet x =g ine: T; &, + VU,

(T-LET)

Typing a parallel composition must control futures:

¢1; Zl il 2’1,2’1’
Oy 3o, X1 FTQ X

(T 61 T &y 1,50 PP m P | Q = 55, mark(Z,), 5] .~ 0

11/14

We say that our system is correct if it is resource-safe.

Resource safe: every hold will be successful

12/14

We say that our system is correct if it is resource-safe.
Resource safe: every hold will be successful

Theorem (Subject reduction)

If®; Y3 0 X and 0 — o', then it exists V, m, Q" such that
U, Y-8 o't Q, where O = %' mark(Q") with Q" fresh.

12/14

Theorem (Weak termination)

If®: O F" o :: ¥ then there exists a reduction 0 —* o’ such
that o' is terminated.

Theorem (Fair termination)
Ifd; 0" o 2 X, then if o — o’ implies o’ is weakly
terminating.

Well-typed configurations are fairly terminating,
— we know it can never be stuck,
— it's resource-safe.

Moreover, it cannot be live-locked, and there cannot be orphan
messages.

13/14

Conclusion and Future work

We introduce an active object language for workflow modelling
with parametrized resource-awareness.

We implement a type system that guarantees that all modelled
workflow systems are resource-safe.

14/14

Conclusion and Future work

We introduce an active object language for workflow modelling
with parametrized resource-awareness.

We implement a type system that guarantees that all modelled
workflow systems are resource-safe.

Future work:

o Make the system fully object-oriented

e Graded futures

14/14

Conclusion and Future work

We introduce an active object language for workflow modelling
with parametrized resource-awareness.

We implement a type system that guarantees that all modelled
workflow systems are resource-safe.

Future work:

o Make the system fully object-oriented

e Graded futures
Thanks for your attention,

questions?

14/14

	Resource Aware Active Objects
	Modelling resources with grades
	The Type System

