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Goal: Understanding Extensions

Type Theory T}
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Type Theory T5

Situation:
» We understand 17.

» We want to understand T5.

» We want to compare 15 to
another extension of 7j.

Two kinds of extensions:

» axiomatic extensions
(easier to understand, can
use proof assistants for 7})

» structural extensions
(trickier)

Axiomatic extensions:
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Approach: Make Extensions Axiomatic

~ 2LTT(T7)
» We want to use two-level type
* theory (2LTT) to represent
other theories.
axiomatic » The vertical extensions are

\

ideally conservative (i.e. don't

| change what is provable).

T 3
a)
structural
A 4
T 3

+axioms

2LTT(TY) » This may lose computational

properties.




Two-level type theory [Voel3; Capl7; ACK18; Ann-+23]

» Two type theories (inner/fibrant and outer/exo theory)

» Inner theory is the type theory of interest; outer theory is “just” auxiliary

language
Tm; —c Tm,
e.g. ext.
MLTT
+, 0, =, +, 0, =,
Ty, : Ty

. ind. types, ind. types,




Example: simplicial type theory in 2LTT

HoTT ~ 2LTT
(e Agda) | (e.g. Agda _ o
——two-level) » Riehl and Shulman’s simplicial type
B theory (STT) [RS17] is HoTT with
two additional components:
structural axiomatic » additional context layers to talk
about shape inclusions and
OLTT extension types,
Y +axioms » simplicial shapes.
STT ;(7)’ (e.g. Agda » Remainder of this talk:
(e 12k) ~—two-level model STT in 2LTT.
+ axioms)




Example: simplicial type theory in 2LTT; extension types
In 2-level type theory:

In simplicial TT, assume: » i: L — K is cofibration if fa, preserves
» & C U are shapes [trivial] fibrations.
(defined using the new » This means: For any fibrant  _“ , »n vy
context layers) family Y : M — U and ' P
> Ais a type on the “big" strictly commuting squares l\L o prl
shape ¥ the type of (d) is fibrant K —— M
> ais a term of A on the (and contractible if Y is).

“small” shape ¢

Then: (I A(t)|2) is the type
of extensions of a.



Example: simplicial type theory in 2LTT; extension types
In 2-level type theory:

In simplicial TT, assume: » i: L — K is cofibration if fa, preserves
» & C U are shapes [trivial] fibrations.
(defined using the new » This means: For any fibrant  _“ , »n vy
context layers) family Y : M — U and ' P
> Ais a type on the “big" strictly commuting squares l\L e prl
shape ¥ the type of (d) is fibrant K —— M
> ais a term of A on the (and contractible if Y is).
“small” shape ® d —2 s N,V
Then: (I A(t)|2) is the type » Special case: ZL a7 prl
of extensions of a. -

vy
Shape inclusions of simplicial type theory = cofibrations of 2LTT
Extension types of simplicial type theory = properties of cofibrations



Example: simplicial type theory in 2LTT; simplicial shapes

Second ingredient of simplicial type theory: a directed interval.

In 2-level type theory:
» We can mirror the STT approach and add

In simplicial type theory:
» Assume a bounded total order

(I,<,L,T) cofibrancy assumptions.
(or a variation) > Alternatively:
> [ is a L-simplex (“line”) On the outer level, define S to be the
Al — T subcategory of simplicial sets, spanned by

subfunctors of representables

(these are the “shapes of interest”);

then, assume a functor shape : S — Ustrict
that sends monos to cofibrations.

» Other simplicial shapes can be
constructed, e.g.
A? = {(t1,te) : I X T | ta <t}



Instantiating 2-level type theory

C

Tm; Tm,
N c ¥ We have assumed that the inner type theory is HoTT.
Ty “ p Ty, We have no requirements (yet) on the outer type theory.



Instantiating 2-level type theory

Tm; € Tm,
v c v We have assumed that the inner type theory is HoTT.
Ty; - TYo  We have no requirements (yet) on the outer type theory.
Con
Possibility 1: Outer theory is ext. MLTT. Possibility 2: Outer type theory is

HoTT; conversion is id

ext.
MLTT
» Close to original approach [RS17]

» Less data » Purely in HoTT
» Slightly more general » Matches [GWB24; GWB25]



Instantiating 2-level type theory

Tm; € Tm,
v c v We have assumed that the inner type theory is HoTT.
Ty; - TYo  We have no requirements (yet) on the outer type theory.
Con
Possibility 1: Outer theory is ext. MLTT. Possibility 2: Outer type theory is

HoTT; conversion is id

ext.
MLTT
» Close to original approach [RS17]

» Less data » Purely in HoTT
» Slightly more general » Matches [GWB24; GWB25]

Approaches “equivalent” b/c, for ©xY — X and z, : X, we have:
strict fibre = Y(z9) ~ X(z:X).Y(z) X (x =x9) = homotopy fibre
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