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Overview

We work in Synthetic Stone Duality (SSD), using pen and paper.

SSD = HoTT + 4 axioms.

Cohomology in HoTT

Given n : N, X : Type, A : X → Ab, we define a group Hn(X ,A).

Hn(X ,A) is the n-th cohomology group of X with coefficient A.

Our previous work [CCGM24]

I Showed SSD is suitable for synthetic topological study of
Stone and compact Hausdorff spaces.

I Proved H1(X ,Z) is well-behaved for X : CHaus .
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Overview

Today

Hn(X ,A) is well-behaved for X : CHaus and A : X → Abcp.

Plan

1. Introduce SSD, Stone spaces and compact Hausdorff spaces.

2. Introduce the cohomology groups Hn(X ,A).

3. Introduce overtly discrete types and Barton-Commelin axioms:

Πx :X I (x) is well-behaved for X : CHaus and I : X → ODisc.

4. Explain our main results:

Hn(X ,A) is well-behaved for X : CHaus and A : X → AbODisc.

An abelian group is overtly discrete iff it is countably presented.
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Outline

SSD, Stone spaces and compact Hausdorff spaces

Intoduction to cohomology in HoTT

Overtly discrete types and Barton-Commelin axioms

Cohomology of Stone and compact Hausdorff spaces

4



Stone spaces

Definition

A type X is a Stone space if it is a sequential limit of finite types.

Example 1: Cantor space

The type 2N is a Stone space.

Indeed 2N = limi :N 2i .

Example 2: Compactification of N
The type:

N∞ = {α : 2N | α hits 1 at most once}

is a Stone space.
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Synthetic Stone duality

Axiom 1a: Scott continuity

If (Sk)k:N is a tower of finite types, then any map in (limk Sk)→ 2
merely factors through an Sk .

Axiom 1b: Markov’s principle

If (Dk)k:N are decidable propositions, ¬(∀k:NDk)→ ∃(k : N).¬Dk .

Axiom 2: Weak König’s lemma

If (Sk)k:N is a tower of inhabited finite types, then ‖limk Sk‖.

Axiom 4: Dependent choice

Axiom 3: Local choice

Assume given S : Stone and Y : S → Type such that Πs:S‖Y (s)‖.
Then there exists T : Stone and p : T � S such that Πt:TY (p(t)).
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Compact Hausdorff spaces

Stone spaces are not stable under quotients.

Definition

A set X is a compact Hausdorff space if:

I Its identity types are Stone spaces.

I There exists S : Stone and S � X .

Example: The unit interval

The type I = [0, 1] is a compact Hausdorff space.

Indeed I is a quotient of 2N.
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Delooping abelian groups

Fix A an abelian group. We define K (A, 0) = A.

Proposition

Given n > 0, there is a unique pointed type K (A, n) such that:

I K (A, n) is (n -1)-connected and n-truncated.

I ΩnK (A, n) = A.

K (A, n) is called the n-th delooping of A.
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Cohomology groups

Definition: Cohomology

Given n : N, X : Type and A : X → Ab, we define

Hn(X ,A) = ‖Πx :X K (Ax , n)‖0.

Remark: Why cohomology?

I If Hn(X ,A) = 0 then we can use some choice on X .

I There exists many tools to compute cohomology.
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Overtly discrete types

We want A such that Hn(X ,A) is well-behaved for X : CHaus.

Idea

We assume A takes value in overtly discrete abelian groups.

Definition

A type is overtly discrete if it is a sequential colimit of finite types.

An abelian group is overtly discrete iff it is countably presented.
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Tychonov and its dual

We prove Barton-Commelin’s condensed type theory axioms.

Lemma: Tychonov

If I : ODisc and X : I → CHaus, then Πi :I Xi is compact Hausdorff.

Proposition: Tychonov’s dual

If X : CHaus and I : X → ODisc, then Πx :X Ix is overtly discrete.

This is encouraging. We have better!
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Scott continuity

Definition

We have a category C where:

ObC = Σ(X : CHaus).X → ODisc

HomC((X , I ), (Y , J)) = Σ(f : Y → X ).Πy :Y If (x) → Jx

Theorem: Generalized Scott continuity

The functor Π : C → ODisc commutes with sequential colimits.
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Čech cohomology

Definition

A Čech cover consists of X : CHaus and S : Stone with p : S � X .

Definition

Given a Čech cover p : S � X and A : X → Abcp, we define
Ȟn(X ,S ,A) as the n-th cohomology group of

Πx :X ASx
x → Πx :X A

S2
x

x → Πx :X A
S3
x

x → · · · .

Ȟn(X , S ,A) is called the n-th Čech cohomology group of X with
coefficient in A.
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Main results

Theorem: Cohomology vanishing for Stone spaces

Given n > 0, S : Stone and A : S → Abcp, we have that

Hn(S ,A) = 0.

Theorem: Čech and regular cohomology agree on CHaus

Given a Čech cover p : S � X and A : X → Abcp, we have that

Hn(X ,A) = Ȟn(X ,S ,A).
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Applications

Lemma: Cohomology of the interval

For A : Abcp, we have that

Hn(I,A) =

{
A if n = 0

0 otherwise.

Lemma: Cohomology of the spheres

For Sk = {x0, . . . , xk : R | Σi x
2
i = 1} and A : Abcp, we have that

Hn(Sk ,A) =

{
A if n = 0 or n = k

0 otherwise.

This extends to all countable topological CW complex.
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Axiom 1a: Scott continuity

If (Sk)k:N is a tower of finite types, then any map in (limk Sk)→ 2
merely factors through an Sk .

Axiom 1b: Markov’s principle

If (Dk)k:N are decidable propositions, ¬(∀k:NDk)→ ∃(k : N).¬Dk .

Axiom 2: Weak König’s lemma

If (Sk)k:N is a tower of inhabited finite types, then ‖limk Sk‖.

Axiom 4: Dependent choice

If (Xk)k:N is a tower with surjective maps, then limk Xk � X0.

Axiom 3: Local choice

Assume given S : Stone and Y : S → Type such that Πs:S‖Y (s)‖.
Then there exists T : Stone and p : T � S such that Πt:TY (p(t)).
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