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SSD = HoTT + 4 axioms.

Cohomology in HoTT

Given n: N, X : Type, A: X — Ab, we define a group H"(X, A).
H"(X, A) is the n-th cohomology group of X with coefficient A.
Our previous work [CCGM24]

Showed SSD is suitable for synthetic topological study of
Stone and compact Hausdorff spaces.

Proved H'(X,Z) is well-behaved for X : CHaus .
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Overview

Today
H"(X,A) is well-behaved for X : CHaus and A : X — Ab,.

Plan

1.
2.
3.

Introduce SSD, Stone spaces and compact Hausdorff spaces.

Introduce the cohomology groups H"(X, A).

Introduce overtly discrete types and Barton-Commelin axioms:
My.x1(x) is well-behaved for X : CHaus and / : X — ODisc.

Explain our main results:

H"(X, A) is well-behaved for X : CHaus and A : X — Abopisc.

An abelian group is overtly discrete iff it is countably presented.
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Stone spaces

Definition

A type X is a Stone space if it is a sequential limit of finite types.
Example 1: Cantor space

The type 2N is a Stone space.

Indeed 2N = lim; .y 2'.

Example 2: Compactification of N

The type:

Noo = {a: 2V | o hits 1 at most once}

is a Stone space.



Indeed N, is the limit of:

Fin(1) «—— Fin(2) «—— Fin(3) «—— Fin(4) - --

{0} {00} {000} «—— - --

N NN

{001} .
{10} {010} -
{100} '

N
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Synthetic Stone duality

Axiom 1la: Scott continuity

If (Sk)k:n is a tower of finite types, then any map in (limy Sx) — 2
merely factors through an S;.

Axiom 1b: Markov's principle

If (Dk)k:n are decidable propositions, =(Vy.ny D) — 3(k : N). =Dx.

Axiom 2: Weak Konig's lemma

If (Sk)k:n is a tower of inhabited finite types, then |[limy Sk/|.

Axiom 4: Dependent choice

Axiom 3: Local choice

Assume given S : Stone and Y : S — Type such that MNg.s|| Y(s).
Then there exists T : Stone and p: T — S such that M7 Y (p(t)).
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Compact Hausdorff spaces

Stone spaces are not stable under quotients.
Definition
A set X is a compact Hausdorff space if:

Its identity types are Stone spaces.
There exists S : Stone and S — X.

Example: The unit interval

The type I = [0, 1] is a compact Hausdorff space.

Indeed T is a quotient of 2V,



Outline

Intoduction to cohomology in HoTT



Delooping abelian groups

Fix A an abelian group. We define K(A,0) = A.

Proposition

Given n > 0, there is a unique pointed type K(A, n) such that:

K(A, n) is (n-1)-connected and n-truncated.
Q"K(A, n) = A.

K (A, n) is called the n-th delooping of A.

10



Cohomology groups

Definition: Cohomology
Given n: N, X : Type and A : X — Ab, we define
H™"(X,A) = [[My.x K(Ax, n)|o-
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Cohomology groups

Definition: Cohomology
Given n: N, X : Type and A : X — Ab, we define
H™"(X,A) = [[My.x K(Ax, n)|o-

Remark: Why cohomology?

If H"(X, A) = 0 then we can use some choice on X.

There exists many tools to compute cohomology.
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Outline

Overtly discrete types and Barton-Commelin axioms
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Overtly discrete types

We want A such that H"(X, A) is well-behaved for X : CHaus.
Idea

We assume A takes value in overtly discrete abelian groups.

Definition
A type is overtly discrete if it is a sequential colimit of finite types.

An abelian group is overtly discrete iff it is countably presented.
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Tychonov and its dual

We prove Barton-Commelin’s condensed type theory axioms.

Lemma: Tychonov

If I : ODisc and X : | — CHaus, then I1;.; X; is compact Hausdorff.

Proposition: Tychonov's dual
If X : CHaus and / : X — ODisc, then Il,.x I, is overtly discrete.

This is encouraging. We have better!
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Scott continuity

Definition
We have a category C where:
Ob¢
Home((X, 1), (Y,J))

Y (X : CHaus). X — ODisc
Z(f Y — X). |_|y;y /f(x) — Jx
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Scott continuity

Definition
We have a category C where:
Obs = X(X :CHaus).X — ODisc
Home((X,1),(Y,J)) = Z(f:Y = X).Myy ) — Ix

Theorem: Generalized Scott continuity

The functor M : C — ODisc commutes with sequential colimits.
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Outline

Cohomology of Stone and compact Hausdorff spaces
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Cech cohomology

Definition

A Cech cover consists of X : CHaus and S : Stone with p : S — X.

Definition
Given a Cech cover p: S — X and A: X — Ab,, we define
H"(X,S,A) as the n-th cohomology group of

S S2 S3
I_IX:X AXX — I_IX:X AXX — I_IX:X AXX = ec° g

H"(X,S,A) is called the n-th Cech cohomology group of X with
coefficient in A.
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Main results

Theorem: Cohomology vanishing for Stone spaces
Given n >0, S : Stone and A: S — Ab,, we have that
H"(S,A) = 0.

Theorem: Cech and regular cohomology agree on CHaus
Given a Cech cover p: S — X and A: X — Ab,, we have that
H"(X,A) = H"(X, S, A).
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Applications

Lemma: Cohomology of the interval
For A: Ab.y, we have that

A ifn=
HA(I, A) = tn=0
0 otherwise.
Lemma: Cohomology of the spheres
For Sk = {xp,...,xx : R | Z;X,? =1} and A: Ab.,, we have that
{A ifn=0orn=k

H"(S¥, A) = .
0 otherwise.

This extends to all countable topological CW complex.
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Axiom la: Scott continuity

If (Sk)k: is a tower of finite types, then any map in (limg Sx) — 2
merely factors through an S.

Axiom 1b: Markov's principle

If (Dy)k:n are decidable propositions, =(Vk.n Dx) — 3(k : N). = Dy.

Axiom 2: Weak Konig's lemma

If (Sk)k:n is a tower of inhabited finite types, then |[limy Sk/|.

Axiom 4: Dependent choice

If (Xk)k: is a tower with surjective maps, then limy Xx — Xo.

Axiom 3: Local choice
Assume given S : Stone and Y : S — Type such that MNg.s|| Y(s)l-

Then there exists T : Stone and p: T — S such that My.7Y(p(t)).
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