
Impredicative Encodings of Inductive and
Coinductive Types

Steven Bronsveld, Herman Geuvers, Niels van der Weide

1/18

Impredicative Encodings

▶ Impredicative encodings allow us to reduce inductive types
to elementary type formers:

∏
, →

▶ This is how one would implement them in Rocq in the past

▶ Only suitable in impredicative settings

Impredicativity: we have an impredicative universe U closed under
= and

∑
and the following rule

Γ ⊢ A Type Γ, x : A ⊢ B x : U
Γ ⊢

∏
(x : A),B x : U

2/18

Impredicative Encodings

▶ Impredicative encodings allow us to reduce inductive types
to elementary type formers:

∏
, →

▶ This is how one would implement them in Rocq in the past

▶ Only suitable in impredicative settings

Impredicativity: we have an impredicative universe U closed under
= and

∑
and the following rule

Γ ⊢ A Type Γ, x : A ⊢ B x : U
Γ ⊢

∏
(x : A),B x : U

2/18

Impredicative Encoding of Lists

Let E be a type. Define List∗ : U as follows.

List∗ =
∏

(X : U),X → (E → X → X) → X

We can define:
nil∗ : List∗

nil∗ = λ(X : U)(n : X)(c : E → X → X), n

cons∗ : E → List∗ → List∗

cons∗ e l = λ(X : U)(n : X)(c : E → X → X), c e l

recList∗ :
∏

(X : U),X → (E → X → X) → List∗ → X

recList∗ X n c = λ(l : List∗), l X n c

3/18

Impredicative Encoding of Lists

Let E be a type. Define List∗ : U as follows.

List∗ =
∏

(X : U),X → (E → X → X) → X

We can define:
nil∗ : List∗

nil∗ = λ(X : U)(n : X)(c : E → X → X), n

cons∗ : E → List∗ → List∗

cons∗ e l = λ(X : U)(n : X)(c : E → X → X), c e l

recList∗ :
∏

(X : U),X → (E → X → X) → List∗ → X

recList∗ X n c = λ(l : List∗), l X n c

3/18

Impredicative Encoding of Lists

Let E be a type. Define List∗ : U as follows.

List∗ =
∏

(X : U),X → (E → X → X) → X

We can define:
nil∗ : List∗

nil∗ = λ(X : U)(n : X)(c : E → X → X), n

cons∗ : E → List∗ → List∗

cons∗ e l = λ(X : U)(n : X)(c : E → X → X), c e l

recList∗ :
∏

(X : U),X → (E → X → X) → List∗ → X

recList∗ X n c = λ(l : List∗), l X n c

3/18

Impredicative Encoding of Lists

Let E be a type. Define List∗ : U as follows.

List∗ =
∏

(X : U),X → (E → X → X) → X

We can define:
nil∗ : List∗

nil∗ = λ(X : U)(n : X)(c : E → X → X), n

cons∗ : E → List∗ → List∗

cons∗ e l = λ(X : U)(n : X)(c : E → X → X), c e l

recList∗ :
∏

(X : U),X → (E → X → X) → List∗ → X

recList∗ X n c = λ(l : List∗), l X n c

3/18

But.....

▶ What do we want of inductive types? Induction principles!

▶ For List∗, we can prove the recursion principle with the
expected β-rules

▶ However, induction is not derivable1

List∗ is not an initial algebra, uniqueness does not hold in general.

1Geuvers, “Induction is not derivable in second order dependent type theory”
4/18

Fixing Impredicative Encodings

Awodey, Frey, and Speight: don’t worry, we can fix this 2

▶ Intuition: the type List∗ has “too many inhabitants”

▶ Define a predicate LimList on List∗ (next slide)

▶ Define List to be
∑

(l : List∗), LimList l

▶ One can prove that List is an initial algebra

▶ Initial algebra semantics: List satisfies induction

2Awodey, Frey, Speight, “Impredicative encodings of (higher) inductive
types”

5/18

Fixing Impredicative Encodings

Awodey, Frey, and Speight: don’t worry, we can fix this 2

▶ Intuition: the type List∗ has “too many inhabitants”

▶ Define a predicate LimList on List∗ (next slide)

▶ Define List to be
∑

(l : List∗), LimList l

▶ One can prove that List is an initial algebra

▶ Initial algebra semantics: List satisfies induction

2Awodey, Frey, Speight, “Impredicative encodings of (higher) inductive
types”

5/18

Fixing Impredicative Encodings

To define LimList:
Suppose we have a commuting square.

1 + E × X 1 + E × Y

X Y

id×f

[nX ,cX] [nY ,cY]

f

6/18

Fixing Impredicative Encodings

To define LimList:
Suppose we have a commuting square.

1 + E × X 1 + E × Y

X Y

List∗

id×f

[nX ,cX] [nY ,cY]

f

recList∗ X nX cX recList∗ Y nY cY

Then the bottom triangle must commute.

6/18

Fixing Impredicative Encodings

We say that l : List∗ satisfies LimList if for all

▶ X : U together with nX : X , cX : E → X → X

▶ Y : U together with nY : Y , cY : E → Y → Y

▶ f : X → Y

▶ pn : f nX = nY
▶ pc :

∏
(e : E)(x : X), f (cX e X) = cY e (f x)

we have
f (recList∗ X nX cX l) = recList∗ Y nY cY l

6/18

Fixing Impredicative Encodings

We say that l : List∗ satisfies LimList if for all

▶ X : U together with nX : X , cX : E → X → X

▶ Y : U together with nY : Y , cY : E → Y → Y

▶ f : X → Y

▶ pn : f nX = nY
▶ pc :

∏
(e : E)(x : X), f (cX e X) = cY e (f x)

we have
f (recList∗ X nX cX l) = recList∗ Y nY cY l

6/18

Fixing Impredicative Encodings

We say that l : List∗ satisfies LimList if for all

▶ X : U together with nX : X , cX : E → X → X

▶ Y : U together with nY : Y , cY : E → Y → Y

▶ f : X → Y

▶ pn : f nX = nY
▶ pc :

∏
(e : E)(x : X), f (cX e X) = cY e (f x)

we have
f (recList∗ X nX cX l) = recList∗ Y nY cY l

6/18

Other Encodings

Awodey, Frey, and Speight considered

▶ sum types

▶ algebras for a functor on sets (i.e., types for which there’s at
most one proof that x = y)

▶ natural numbers

▶ the circle

They worked in a setting without uniqueness of identity proofs

Note: one can get rid of the truncation assumption3 4

3Echeveste, “Alternative impredicative encodings of inductive types”
4https://homotopytypetheory.org/2018/11/26/

impredicative-encodings-part-3/
7/18

https://homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/
https://homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/

Other Encodings

Awodey, Frey, and Speight considered

▶ sum types

▶ algebras for a functor on sets (i.e., types for which there’s at
most one proof that x = y)

▶ natural numbers

▶ the circle

They worked in a setting without uniqueness of identity proofs
Note: one can get rid of the truncation assumption3 4

3Echeveste, “Alternative impredicative encodings of inductive types”
4https://homotopytypetheory.org/2018/11/26/

impredicative-encodings-part-3/
7/18

https://homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/
https://homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/

This work: coinductive types

We look at the dualization

▶ define M-types using impredicative encodings

▶ prove suitable coinduction principles, i.e., bisimulation
corresponds to equality

This talk: how to define streams using impredicative encodings

8/18

Main Idea

Recall:

List∗ =
∏

(X : U),X → (E → X → X) → X

List =
∑

(l : List∗), LimList l

To dualize this construction:

▶ To dualize
∏
, we use existential types

▶ To dualize the subtype: we use quotient types

9/18

Existential Types

Let P : U → U be a type family. Then we have

▶ ∃(X : U),P X : U
▶ pack :

∏
(X : U),P X → ∃(X : U),P X

together with a recursion principle:

rec∃ :
∏

(Y : U),

(
∏

(Z : U),P Z → Y)

→ (∃(X : U),P X)

→ Y

satisfying the expected β- and η-rules.

10/18

Existential Types

Let P : U → U be a type family. Then we have

▶ ∃(X : U),P X : U
▶ pack :

∏
(X : U),P X → ∃(X : U),P X

together with a recursion principle:

rec∃ :
∏

(Y : U),

(
∏

(Z : U),P Z → Y)

→ (∃(X : U),P X)

→ Y

satisfying the expected β- and η-rules.

10/18

Encoding Streams

Let E be a type. We define Stream∗ as follows5.

Stream∗ = ∃(X : U),X × (X → E)× (X → X)

This allows us to define:

▶ hd∗ : Stream∗ → E

▶ tl∗ : Stream∗ → Stream∗

▶ corec∗ :
∏
(X : U), (X → E) → (X → X) → X → Stream∗

5Geuvers. “The Church-Scott representation of inductive and coinductive
data”

11/18

Fixing the Impredicative Encoding for Streams

▶ Just like for lists, we cannot prove a suitable coinduction
principle for Stream∗.

▶ Fix for lists: take a subtype

▶ Fix for streams: take a quotient

12/18

Quotient Types

Using impredicative encodings, we construct quotient types
Let X : U and let R : X → X → U be a relation. Then we have

▶ a type X/R : U
▶ a function cls : X → X/R

For all Y : U and f : X → Y that respects R, there is a unique
recQ Y f making the following diagram commute

X X/R

Y

cls

f
recQ Y f

13/18

Recall: Fixing Impredicative Encodings for Lists

To define LimList:
Suppose we have a commuting square.

1 + E × X 1 + E × Y

X Y

List∗

id×f

[nX ,cX] [nY ,cY]

f

recList∗ X nX cX recList∗ Y nY cY

Then the bottom triangle must commute.

14/18

Recall: Fixing Impredicative Encodings for Streams

Suppose we have a commuting square.

X Y

E × X E × Y

f

[hX ,tX] [hY ,tY]

id×f

15/18

Fixing Impredicative Encodings for Streams

Suppose we have a commuting square.

Stream∗

X Y

E × X E × Y

corec X hX tX

f

[hX ,tX]

corec Y hY tY

[hY ,tY]

id×f

Then the upper triangle must commute

16/18

Fixing Impredicative Encodings for Streams

Given σ, τ : Stream∗, we say σ ≡ τ if

∃(X : U)(hX : X → E)(tX : X → X)

(Y : U)(hY : Y → E)(tY : Y → Y)

17/18

Fixing Impredicative Encodings for Streams

Given σ, τ : Stream∗, we say σ ≡ τ if

∃(X : U)(hX : X → E)(tX : X → X)

(Y : U)(hY : Y → E)(tY : Y → Y)

(f : X → Y)

17/18

Fixing Impredicative Encodings for Streams

Given σ, τ : Stream∗, we say σ ≡ τ if

∃(X : U)(hX : X → E)(tX : X → X)

(Y : U)(hY : Y → E)(tY : Y → Y)

(f : X → Y)

(ph :
∏

(x : X), hX x = hY (f y))

(pt :
∏

(x : X), tY (f x) = f (tX x))

17/18

Fixing Impredicative Encodings for Streams

Given σ, τ : Stream∗, we say σ ≡ τ if

∃(X : U)(hX : X → E)(tX : X → X)

(Y : U)(hY : Y → E)(tY : Y → Y)

(f : X → Y)

(ph :
∏

(x : X), hX x = hY (f y))

(pt :
∏

(x : X), tY (f x) = f (tX x))

(x : X),

σ = corec X hX tX x

∧ τ = corec Y hY tY (f x)

Define Stream = Stream∗/≡.

17/18

Fixing Impredicative Encodings for Streams

Given σ, τ : Stream∗, we say σ ≡ τ if

∃(X : U)(hX : X → E)(tX : X → X)

(Y : U)(hY : Y → E)(tY : Y → Y)

(f : X → Y)

(ph :
∏

(x : X), hX x = hY (f y))

(pt :
∏

(x : X), tY (f x) = f (tX x))

(x : X),

σ = corec X hX tX x

∧ τ = corec Y hY tY (f x)

Define Stream = Stream∗/≡.

17/18

Conclusion

Key points:

▶ We can use impredicative encodings to define inductive and
coinductive types

▶ For inductive types: use a subtype (Awodey, Frey, Speight)

▶ Dual for coinductive types: use existential and quotient types

▶ This talk: demonstrate it for streams

▶ This method works for M-types

See our paper “Impredicative Encodings of Inductive and
Coinductive Types” at FSCD2025

18/18

Existential Types

Impredicative encoding: we define ∃∗(X : U),P X to be∏
(Y : U), (

∏
(Z : U), (P Z → Y) → Y) → Y

We define Lim∃ similarly to LimList and

∃(X : U),P X =
∑

(x : ∃∗(X : U),P X), Lim∃ x

18/18

Quotient Types

The starting point is the following type:

X/∗R =
∏

(Z : U)(f : X → Z), resp f R → Z

Here resp f R says that f respects R.

We define LimQ similarly to LimList and

X/R =
∑

(x : X/∗R), LimQ x

18/18

Quotient Types

The starting point is the following type:

X/∗R =
∏

(Z : U)(f : X → Z), resp f R → Z

Here resp f R says that f respects R.
We define LimQ similarly to LimList and

X/R =
∑

(x : X/∗R), LimQ x

18/18

Encoding Streams: Tails

Let’s see how to define tl∗ : Stream∗ → Stream∗.

tl∗ s = ?

where ? : Stream∗

18/18

Encoding Streams: Tails

Let’s see how to define tl∗ : Stream∗ → Stream∗.

tl∗ s = rec∃ Stream
∗ ? s

where ? :
∏
(Z : U),Z × (Z → E)× (Z → Z) → Stream∗

18/18

Encoding Streams: Tails

Let’s see how to define tl∗ : Stream∗ → Stream∗.

tl∗ s = rec∃ Stream
∗ (λZ z h t, ?) s

where ? : Stream∗

Here:

▶ Z : U
▶ z : Z

▶ h : Z → E

▶ t : Z → Z

18/18

Encoding Streams: Tails

Let’s see how to define tl∗ : Stream∗ → Stream∗.

tl∗ s = rec∃ Stream
∗ (λZ z h t, pack Z ?) s

where ? : Z × (Z → E)× (Z → Z)
Here:

▶ Z : U
▶ z : Z

▶ h : Z → E

▶ t : Z → Z

18/18

Encoding Streams: Tails

Let’s see how to define tl∗ : Stream∗ → Stream∗.

tl∗ s = rec∃ Stream
∗ (λZ z h t, pack Z ⟨t z , h, t⟩) s

Here:

▶ Z : U
▶ z : Z

▶ h : Z → E

▶ t : Z → Z

18/18

Encoding Streams: Tails

Let’s see how to define tl∗ : Stream∗ → Stream∗.

tl∗ s = rec∃ Stream
∗ (λZ z h t, pack Z ⟨t z , h, t⟩) s

Here:

▶ Z : U
▶ z : Z

▶ h : Z → E

▶ t : Z → Z

18/18

	Appendix

