Impredicative Encodings of Inductive and
Coinductive Types

Steven Bronsveld, Herman Geuvers, Niels van der Weide

1/18

Impredicative Encodings

» Impredicative encodings allow us to reduce inductive types
to elementary type formers: [[, —

» This is how one would implement them in Rocq in the past

» Only suitable in impredicative settings

2/18

Impredicative Encodings

» Impredicative encodings allow us to reduce inductive types
to elementary type formers: [[, —

» This is how one would implement them in Rocq in the past
» Only suitable in impredicative settings

Impredicativity: we have an impredicative universe U closed under
= and) and the following rule

I+ AType Nx:AFBx:U
FEJ[(x:A),Bx:U

2/18

Impredicative Encoding of Lists
Let E be a type. Define List™ : I/ as follows.

List* = JJ(X : U), X = (E = X = X) = X

3/18

Impredicative Encoding of Lists
Let E be a type. Define List* : U as follows.
List* = JJ(X : U), X = (E = X = X) = X

We can define:
nil* : List*

nil* = XX :U)(n: X)(c: E—X—X),n

3/18

Impredicative Encoding of Lists
Let E be a type. Define List* : U as follows.
List* = JJ(X : U), X = (E = X = X) = X

We can define:
nil* : List*

nil* = XX :U)(n: X)(c: E—X—X),n

cons* : E — List" — List*

cons*el=ANX:U)n: X)(c:E—X—X),cel

3/18

Impredicative Encoding of Lists
Let E be a type. Define List* : U as follows.
List* = JJ(X : U), X = (E = X = X) = X

We can define:
nil* : List*

nil* = XX :U)(n: X)(c: E—X—X),n

cons* : E — List" — List*

cons*el=ANX:U)n: X)(c:E—X—X),cel

recliser + [[(X :U), X = (E = X = X) — List* = X
recpise X nc = A(/: List*),/ X nc

3/18

» What do we want of inductive types? Induction principles!

» For List*, we can prove the recursion principle with the
expected [-rules

» However, induction is not derivable!

List* is not an initial algebra, uniqueness does not hold in general.

!Geuvers, “Induction is not derivable in second order dependent type theory”
4/18

Fixing Impredicative Encodings

Awodey, Frey, and Speight: don't worry, we can fix this 2
» Intuition: the type List* has “too many inhabitants”
» Define a predicate Limyjs; on List™ (next slide)

» Define List to be > (/: List™), Limys; /

2Awodey, Frey, Speight, “Impredicative encodings of (higher) inductive

types”
5/18

Fixing Impredicative Encodings

Awodey, Frey, and Speight: don't worry, we can fix this 2
» Intuition: the type List* has “too many inhabitants”
» Define a predicate Limyjs; on List™ (next slide)

» Define List to be > (/: List™), Limys; /
» One can prove that List is an initial algebra
>

Initial algebra semantics: List satisfies induction

2Awodey, Frey, Speight, “Impredicative encodings of (higher) inductive

types”
5/18

Fixing Impredicative Encodings

To define Limyg:
Suppose we have a commuting square.

1+ExX — > 1L Exy

["x7CxLL lﬁnv,CY]
X Y

6/18

Fixing Impredicative Encodings

To define Lim:
Suppose we have a commuting square.

1+ ExX id>xf sy 1+ E XY
[nX’CX]J’ l[nYaCY]
X f » Y
recpisyx X ’('XX A* Y ny cy
List*

Then the bottom triangle must commute.

6/18

Fixing Impredicative Encodings

We say that / : List* satisfies Limy;s; if for all
> X : U together with nx : X, cx : E—> X = X
> Y : U together withny : Y, cy :1E—-Y =Y

6/18

Fixing Impredicative Encodings

We say that / : List* satisfies Limy;s; if for all
> X : U together with nx : X, cx : E—> X = X
> Y : U together withny : Y, cy :1E—-Y =Y
> X—=>Y
» pn:fnx =ny
> pe:[(e: E)(x: X),f(cxeX)=cye(fx)

6/18

Fixing Impredicative Encodings

We say that / : List* satisfies Limy;s; if for all
> X : U together with nx : X, cx : E—> X = X
> Y : U together withny : Y, cy :1E—-Y =Y
> XY
» pn:fnx =ny
> pe:[(e: E)(x: X),f(cxeX)=cye(fx)
we have
f (recriser X nx cx 1) = recpise= Y ny cy |

6/18

Other Encodings

Awodey, Frey, and Speight considered
> sum types

> algebras for a functor on sets (i.e., types for which there's at
most one proof that x = y)

» natural numbers

» the circle

They worked in a setting without uniqueness of identity proofs

3Echeveste, “Alternative impredicative encodings of inductive types’
*https://homotopytypetheory.org/2018/11/26/
impredicative-encodings-part-3/
7/18

https://homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/
https://homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/

Other Encodings

Awodey, Frey, and Speight considered
> sum types

> algebras for a functor on sets (i.e., types for which there's at
most one proof that x = y)

» natural numbers
» the circle

They worked in a setting without uniqueness of identity proofs
Note: one can get rid of the truncation assumption3 #

3Echeveste, “Alternative impredicative encodings of inductive types’
*https://homotopytypetheory.org/2018/11/26/
impredicative-encodings-part-3/
7/18

https://homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/
https://homotopytypetheory.org/2018/11/26/impredicative-encodings-part-3/

This work: coinductive types

We look at the dualization
> define M-types using impredicative encodings

» prove suitable coinduction principles, i.e., bisimulation
corresponds to equality

This talk: how to define streams using impredicative encodings

8/18

Main Idea

Recall:
List* = JJ(X : U), X = (E - X = X) = X
List = > "(/: List*), Limiist /
To dualize this construction:

» To dualize [], we use existential types

P> To dualize the subtype: we use quotient types

9/18

Existential Types

Let P:U — U be a type family. Then we have
> I(X:U),PX:U
» pack: [[(X:U),PX —3IX:U),PX

10/18

Existential Types

Let P:U — U be a type family. Then we have
> I(X:U),PX:U
» pack: [[(X:U),PX —3IX:U),PX

together with a recursion principle:

reca:H(Y:Z/{),
(I(z:u),Ppz—Y)
— (3(X :U),P X)
—Y

satisfying the expected - and n-rules.

10/18

Encoding Streams

Let E be a type. We define Stream* as follows®.
Stream™ = 3(X : U), X x (X — E) x (X — X)

This allows us to define:
» hd* : Stream™ — E
> tI* : Stream™ — Stream”
» corec* : [[(X :U),(X = E) - (X = X) = X — Stream”

®Geuvers. “The Church-Scott representation of inductive and coinductive

data”
11/18

Fixing the Impredicative Encoding for Streams

> Just like for lists, we cannot prove a suitable coinduction
principle for Stream®.

» Fix for lists: take a subtype

» Fix for streams: take a quotient

12/18

Quotient Types

Using impredicative encodings, we construct quotient types
Let X :U and let R: X — X — U be a relation. Then we have

> atype X/R:U
» a function cls: X — X/R

Forall Y :U and f : X — Y that respects R, there is a unique
recq Y f making the following diagram commute

XC*'S>X/R

-

/ recq Y f
Y

13/18

Recall: Fixing Impredicative Encodings for Lists

To define Lim:
Suppose we have a commuting square.

1+ ExX id>xf sy 1+ E XY
[nX’CX]J’ l[nYaCY]
X f » Y
recpisyx X ’('XX A* Y ny cy
List*

Then the bottom triangle must commute.

14/18

Recall: Fixing Impredicative Encodings for Streams

Suppose we have a commuting square.

X f y Y
[hxix]l l[hv,tvl
Ex X —f Exy

15/18

Fixing Impredicative Encodings for Streams

Suppose we have a commuting square.

Stream*
corec X V ‘wY hy ty
f
X »Y
[thtX]l l[hy’tY]
idxf

E x X s ExXY

Then the upper triangle must commute

16/18

Fixing Impredicative Encodings for Streams

Given o, 7 : Stream™, we say 0 = 7 if

(X U)(hx - X — E)(tx : X = X)
(Y:U)hy: Y = E)(ty: Y = Y)

17/18

Fixing Impredicative Encodings for Streams

Given o, 7 : Stream®, we say o0 = 7 if
(X :U)(hx : X — E)(tx : X = X)

(Y:U)hy:Y = E)(ty: Y —=Y)
(F: X=Y)

17/18

Fixing Impredicative Encodings for Streams

Given o, 7 : Stream™, we say o = 7 if

IX U (hx X — E)(tx: X — X)
(Y :U)(hy : Y = E)(ty : Y = Y)
(F: X—=Y)

(pn: [JOx: X), bx x = hy(f y))
(pe: JJOx: X), ty (F x) = f (tx x))

17/18

Fixing Impredicative Encodings for Streams

Given o, 7 : Stream™®, we say 0 = 7 if

AX : U)(hx : X = E)(tx : X = X)
(Y :U)(hy : Y = E)(ty : Y = Y)
(F:X—=Y)

(pn: [(x = X), hx x = hy(f y))
(pe - [T0x: X), v (F x) = (tx X))
x 1 X),

o = corec X hx tx x

AT = corec Y hy ty (f x)

17/18

Fixing Impredicative Encodings for Streams

Given o, 7 : Stream™®, we say 0 = 7 if

AX : U)(hx : X = E)(tx : X = X)
(Y :U)(hy : Y = E)(ty : Y = Y)
(f:X—=Y)

(pn: [(x = X), hx x = hy(f y))
(pe : [T(x X). ty (£ %) = £ (tx x))
x 1 X),
o = corec X hx tx x

T = corec Y hy ty (f x)

Define Stream = Stream™/=.

17/18

Conclusion

Key points:

> We can use impredicative encodings to define inductive and
coinductive types

» For inductive types: use a subtype (Awodey, Frey, Speight)
» Dual for coinductive types: use existential and quotient types
» This talk: demonstrate it for streams

» This method works for M-types

See our paper “Impredicative Encodings of Inductive and
Coinductive Types" at FSCD2025

18/18

Existential Types

Impredicative encoding: we define 3*(X : i), P X to be
[y w).(JJz:u),(Pz-Y)=Y)=Y
We define Limg similarly to Lims; and

X U, PX =) (x:T(X:U),PX),Lims x

18/18

Quotient Types

The starting point is the following type:
X/*R=T[(Z:U)f:X = 2Z),respf R— Z

Here resp f R says that f respects R.

18/18

Quotient Types

The starting point is the following type:
X/*R=T[(Z:U)f:X = 2Z),respf R— Z

Here resp f R says that f respects R.
We define Limq similarly to Lim;s; and

X/R =" (x:X/*R),Limq x

18/18

Encoding Streams: Tails

Let's see how to define tI* : Stream™ — Stream™.
ths=7

where 7 : Stream™

18/18

Encoding Streams: Tails

Let's see how to define tI* : Stream™ — Stream™.
tI* s = recg Stream® ? s

where 7 : [[(Z : U),Z x (Z — E) x (Z — Z) — Stream”

18/18

Encoding Streams: Tails

Let's see how to define tI* : Stream™ — Stream™.
tl* s = recg Stream™ (\Zzht,?)s

where 7 : Stream*
Here:

> Z:U
> z:. 7
» h:Z—E
> t. /-7

18/18

Encoding Streams: Tails

Let's see how to define tI* : Stream™ — Stream™.
tl* s = recg Stream™ (AZzht,pack Z?) s

where ?: Z x (Z - E) x (Z — 2)
Here:

> Z:U

> z:. 7

» h:Z— E

> t. /-7

18/18

Encoding Streams: Tails

Let's see how to define tI* : Stream™ — Stream™.

tl* s = recg Stream® (AZ zht,pack Z (t z, h, t)) s

Here:

> 7:U

> z: 7

» h:Z—E
>t /-7

18/18

Encoding Streams: Tails

Let's see how to define tI* : Stream™ — Stream™.

tl* s = recg Stream® (AZ zht,pack Z (t z, h, t)) s

Here:

> 7:U

> z: 7

» h:Z—E
>t /-7

18/18

	Appendix

