
Lean4Lean:
Mechanizing the metatheory of Lean

Mario Carneiro

Chalmers University of Technology, University of Gothenburg

June 13, 2025

1 / 26

Introduction

▶ I don’t think I need to explain what Lean is to this crowd
▶ What will be relevant for this talk:
▶ Lean is an ITP (Interactive Theorem Prover)
▶ It is based on Dependent Type Theory

▶ Specifically, an extension of Martin-Löf Type Theory (MLTT)
called the Calculus of Inductive Constructions (CIC)

2 / 26

Introduction

▶ I don’t think I need to explain what Lean is to this crowd

▶ What will be relevant for this talk:
▶ Lean is an ITP (Interactive Theorem Prover)
▶ It is based on Dependent Type Theory

▶ Specifically, an extension of Martin-Löf Type Theory (MLTT)
called the Calculus of Inductive Constructions (CIC)

2 / 26

Introduction

▶ I don’t think I need to explain what Lean is to this crowd
▶ What will be relevant for this talk:
▶ Lean is an ITP (Interactive Theorem Prover)

▶ It is based on Dependent Type Theory
▶ Specifically, an extension of Martin-Löf Type Theory (MLTT)

called the Calculus of Inductive Constructions (CIC)

2 / 26

Introduction

▶ I don’t think I need to explain what Lean is to this crowd
▶ What will be relevant for this talk:
▶ Lean is an ITP (Interactive Theorem Prover)
▶ It is based on Dependent Type Theory

▶ Specifically, an extension of Martin-Löf Type Theory (MLTT)
called the Calculus of Inductive Constructions (CIC)

2 / 26

Introduction

▶ I don’t think I need to explain what Lean is to this crowd
▶ What will be relevant for this talk:
▶ Lean is an ITP (Interactive Theorem Prover)
▶ It is based on Dependent Type Theory

▶ Specifically, an extension of Martin-Löf Type Theory (MLTT)
called the Calculus of Inductive Constructions (CIC)

2 / 26

Lean4Lean

▶ In 2019 I worked out the properties of LeanTT for my masters thesis

▶ It has been 5 years since then and we have a new Lean version now, which
made some kernel changes

▶ Lean 4 has had a few (minor, short-lived) soundness bugs
▶ So I’ve been working on a project to formalize the kernel
▶ One sentence summary: “It’s MetaRocq, but for Lean”

3 / 26

Lean4Lean

▶ In 2019 I worked out the properties of LeanTT for my masters thesis
▶ It has been 5 years since then and we have a new Lean version now, which

made some kernel changes

▶ Lean 4 has had a few (minor, short-lived) soundness bugs
▶ So I’ve been working on a project to formalize the kernel
▶ One sentence summary: “It’s MetaRocq, but for Lean”

3 / 26

Lean4Lean

▶ In 2019 I worked out the properties of LeanTT for my masters thesis
▶ It has been 5 years since then and we have a new Lean version now, which

made some kernel changes
▶ Lean 4 has had a few (minor, short-lived) soundness bugs

▶ So I’ve been working on a project to formalize the kernel
▶ One sentence summary: “It’s MetaRocq, but for Lean”

3 / 26

Lean4Lean

▶ In 2019 I worked out the properties of LeanTT for my masters thesis
▶ It has been 5 years since then and we have a new Lean version now, which

made some kernel changes
▶ Lean 4 has had a few (minor, short-lived) soundness bugs
▶ So I’ve been working on a project to formalize the kernel

▶ One sentence summary: “It’s MetaRocq, but for Lean”

3 / 26

Lean4Lean

▶ In 2019 I worked out the properties of LeanTT for my masters thesis
▶ It has been 5 years since then and we have a new Lean version now, which

made some kernel changes
▶ Lean 4 has had a few (minor, short-lived) soundness bugs
▶ So I’ve been working on a project to formalize the kernel
▶ One sentence summary: “It’s MetaRocq, but for Lean”

3 / 26

Bootstrapping Lean

▶ Lean is about 80% written in Lean,
including:
▶ The parser
▶ The elaborator
▶ The tactic language
▶ The metaprogramming framework
▶ The LSP server

▶ The exceptions are:
▶ The runtime (very small)
▶ The interpreter
▶ Half of the backend of the old compiler
▶ The kernel

▶ Of these, one of them is both mathematically
interesting and soundness critical...

4 / 26

Bootstrapping Lean

▶ Lean is about 80% written in Lean,
including:
▶ The parser
▶ The elaborator
▶ The tactic language
▶ The metaprogramming framework
▶ The LSP server

▶ The exceptions are:
▶ The runtime (very small)
▶ The interpreter
▶ Half of the backend of the old compiler
▶ The kernel

▶ Of these, one of them is both mathematically
interesting and soundness critical...

4 / 26

Bootstrapping Lean

▶ Lean is about 80% written in Lean,
including:
▶ The parser
▶ The elaborator
▶ The tactic language
▶ The metaprogramming framework
▶ The LSP server

▶ The exceptions are:
▶ The runtime (very small)
▶ The interpreter
▶ Half of the backend of the old compiler
▶ The kernel

▶ Of these, one of them is both mathematically
interesting and soundness critical...

4 / 26

Lean4Lean

Project goals:

1. ▶ Make a Lean kernel...
▶ which is complete for everything the original can handle
▶ and competitive with the original so that it can be considered as a replacement.

2. ▶ Write down the type theory of Lean (but formally, in Lean itself)
▶ Prove structural properties about the type system

3. ▶ Prove the correctness of the implementation with respect to the specification

5 / 26

Lean4Lean

Project goals:

1. ✓ Make a Lean kernel...
✓ which is complete for everything the original can handle
✓ and competitive with the original so that it can be considered as a replacement.

2. ✓ Write down the type theory of Lean (but formally, in Lean itself)
▲ Prove structural properties about the type system

3. ▲ Prove the correctness of the implementation with respect to the specification

6 / 26

The Lean4Lean kernel

▶ A carbon copy of the C++ code
▶ It does all the same fancy tricks as the original, and no more
✓ Union-find data structures for caching
✓ Pointer equality testing
✓ Bidirectional typechecking
✓ Identical def.eq. heuristics
✓ η for structures, nested inductive types
× Naive implementation of substitution and reduction

▶ Suitable for differential fuzzing (e.g. it will get exactly the same counts for
definition unfolding etc.)

▶ Uses Lean’s own Expr type
▶ A few algorithms are reused when they were already available in Lean

7 / 26

The Lean4Lean kernel

lean4export lean4lean ratio
Lean 37.01 s 44.61 s 1.21
��Std Batteries 32.49 s 45.74 s 1.40
Mathlib (+ Std + Lean) 44.54 min 58.79 min 1.32

▶ Performance is about 30% worse than the original
(How good this is depends on your temperament)

▶ Lean itself took hits of a similar order of magnitude when moving the
elaborator out of C++, and that was worth it for the improved extensibility
and development features

▶ It has since clawed back all the performance and then some by implementing
better algorithms that were difficult to get right in C++

▶ I want to experiment with better reduction strategies, this is never going to
happen with the current kernel

8 / 26

Recall: DTT

9 / 26

Dependent Type Theory

e ::= x | c | e e | λx : e. e | ∀x : e. e | Un

Γ ::= · | Γ, x : e

(x : τ) ∈ Γ
Γ ⊢ x : τ

Γ ⊢ e1 : ∀x : α. β Γ ⊢ e2 : α
Γ ⊢ e1 e2 : β[e2/x]

Γ, x : α ⊢ e : β
Γ ⊢ (λx : α. e) : ∀x : α. β Γ ⊢ Un : Un+1

Γ ⊢ α : Um Γ, x : α ⊢ β : Un

Γ ⊢ ∀x : α. β : Uimax(m,n)

Γ ⊢ e : α Γ ⊢ α ≡ β

Γ ⊢ e : β

10 / 26

Buzzword bingo

Lean’s specific flavor of DTT has:
▶ an impredicative universe Prop of propositions
▶ algebraic universes (with max & imax,

where imax(a, b) := if b = 0 then 0 else max(a, b))
▶ definitional proof irrelevance
▶ no universe cumulativity
▶ indexed, mutual and nested inductive types
▶ an η reduction rule for lambdas and structures

11 / 26

Proof Irrelevance and its consequences

▶ We want to treat all proofs of a proposition as “the same”

Γ ⊢ p : P Γ ⊢ h : p Γ ⊢ h′ : p
Γ ⊢ h ≡ h′

▶ This means that an equality has at most one proof (anti-HoTT)
▶ To prevent inconsistency, some inductive types cannot eliminate to a large

universe

∃x : α. p x := µT : P. (intro : ∀x : α. p x→ T)
intro : ∀x : α. (p x→ ∃y : α. p y)
rec∃ : ∀C : U0.(∀x : α. p x→ C)→ (∃x : α. p x)→ C

▶ Some inductive types in P eliminate to other universes, if they have “at most
one inhabitant by definition”, this is called subsingleton elimination

12 / 26

Actual axioms
▶ Propositional extensionality

propext : ∀p, q : P. (p↔ q)→ p = q

▶ Quotient types

quot : ∀α : Un. (α→ α→ P)→ Un

mkα,r : α→ α/r
liftα,r : ∀β. ∀f : α→ β. (∀x y. r x y→ f x = f y)→ α/r→ β

soundα,r : ∀x y. r x y→ mk x = mk y

lift β f H (mk x) ≡ f x

▶ The axiom of choice

nonempty α := µT : U0. (intro : α→ T)
choice : ∀α : Un. nonempty α→ α

13 / 26

DTT in ZFC

▶ There is an “obvious” model of DTT in ZFC, where we treat types as sets and
elements as elements of the sets

▶ The interpretation function ⟦Γ ⊢ e⟧γ (or just ⟦e⟧) translates e into a set when
Γ ⊢ e : α is well typed and γ ∈ ⟦Γ⟧ provides a values for the context

▶ Because of proof irrelevance and the axiom of choice (which implies LEM), we
must have ⟦P⟧ := {∅, {•}}

▶ For all higher universes, we interpret functions as functions, i.e. f ∈ ⟦∀x : α. β⟧
if f is a function with domain ⟦α⟧ such that f (x) ∈ ⟦β⟧x for all x ∈ ⟦α⟧

▶ With this translation, because of inductive types the universes must be very
large (Grothendieck universes). We let ⟦Un+1⟧ = Vκn where κn is the n-th
inaccessible cardinal (if it exists)

14 / 26

Lean is consistent

Theorem (Soundness)

1. If Γ ⊢ α : P, then ⟦Γ ⊢ α⟧γ ⊆ {•}
2. If Γ ⊢ e : α and lvl(Γ ⊢ α) = 0, then ⟦Γ ⊢ e⟧γ = •.
3. If Γ ⊢ e : α, then there exists k ∈N such that if there are k inaccessible cardinals, then
⟦Γ ⊢ e⟧γ ∈ ⟦Γ ⊢ α⟧γ for all γ ∈ ⟦Γ⟧.

4. If Γ ⊢ e ≡ e′, then there exists k ∈N such that if there are k inaccessible cardinals,
then ⟦Γ ⊢ e⟧γ = ⟦Γ ⊢ e′⟧γ for all γ ∈ ⟦Γ⟧.

▶ As a consequence, Lean is consistent (there is no derivation of ⊥), if ZFC with
ω inaccessibles is consistent.

▶ More precisely, Lean is equiconsistent with
ZFC + {there are n inaccessibles | n < ω}, because Lean models ZFC + n
inaccessibles for all n < ω

15 / 26

Undecidability

▶ The type judgment is “almost” decidable, but not quite
▶ The problem is an interaction of subsingleton elimination (for Acc) and proof

irrelevance
▶ ask me if you want more details

16 / 26

Algorithmic typing judgment

▶ Lean resolves this by underapproximating the ≡ and ⊢ judgments
▶ If we introduce Γ ⊢ e⇔ e′ and Γ ⊩ e : α judgments for “the thing Lean does”,

then Γ ⊩ e : α implies Γ ⊢ e : α and Γ ⊢ e⇔ e′ implies Γ ⊢ e ≡ e′, so Lean is an
underapproximation of the “true” typing judgment
▶ We will not attempt to prove completeness of the kernel

▶ Γ ⊢ e⇔ e′ is not transitive, and Γ ⊩ e : α does not satisfy subject reduction
▶ Γ ⊢ e ≡ e′ and Γ ⊢ e : α are better behaved (by fiat), but undecidable
▶ In Lean4Lean we mostly concern ourselves with the abstract judgment

17 / 26

Unique typing: not yet a theorem

Conjecture (Unique typing)

If Γ ⊢ e : α and Γ ⊢ e : β, then Γ ⊢ α ≡ β.

Conjecture (Definitional inversion)

▶ If Γ ⊢ Um ≡ Un, then m = n.
▶ If Γ ⊢ ∀x : α. β ≡ ∀x : α′. β′, then Γ ⊢ α ≡ α′ and Γ, x : α ⊢ β ≡ β′.
▶ If Γ ⊢ Un . ∀x : α. β.

▶ When formalizing this proof from my thesis, I found a gap in the proof
▶ I still believe the theorems are true
▶ There is an alternative path to the proof of soundness, but some of the kernel

optimizations depend on this theorem

18 / 26

The Church Rosser theorem

Theorem (for Lean)

If Γ ⊢ e : α, and Γ ⊢ e⇝∗κ e1, e2, then there exists e′1, e
′

2 such that Γ ⊢ ei⇝∗κ e′i and
Γ ⊢ e′1 ≡p e′2.

▶ The statement uses two new relations, the κ reduction⇝κ and proof
equivalence ≡p.

▶ ⇝κ is a more aggressive version of Lean’s reduction relation that unfolds
subsingleton eliminators even on variables

▶ ≡p is “equality except at proof arguments” with η conversion.

Γ ⊢ e : α
Γ ⊢ e ≡p e

Γ, x : α ⊢ e ≡p e′ x
Γ ⊢ λx : α. e ≡p e′

Γ ⊢ p : P Γ ⊢ h, h′ : p
Γ ⊢ h ≡p h′

. . .

19 / 26

The Church Rosser theorem

▶ The⇝κ reduction will reduce recacc C f x h (where h : acc< x) to

f x (invx h) (λy h′. recacc C f y (invx h y h′))

so it is not strongly or weakly normalizing
▶ So it is similar to the untyped lambda reduction in that by allowing infinite

reduction we open the possibility of bringing divergent reductions back
together (within ≡p)

▶ The proof of Church-Rosser as stated uses the Tait–Martin-Löf method (using
a parallel reduction relation≫κ and its almost deterministic analogue≫κ)

20 / 26

Unique typing

▶ The proof used a stratification of the typing judgment for the induction order,
but Γ ⊢n e : α is not closed under substitution.

▶ The Church-Rosser part of the proof seems okay, but we need a smarter
induction measure.

▶ For part 3 of the project, I have decided to set this proof aside and sorry it.
The Lean kernel really depends on this property for correctness.

▶ Type theorists wanted!
▶ I don’t think this is a crazy impossible problem, but I’m doing too many projects

at once (see: rest of the talk). I would be very happy if someone picked this up

21 / 26

Verifying the kernel

22 / 26

Verifying the kernel

Lean doesn’t just implement the type theory as-is. It has a laundry list of
optimizations over the obvious definition in almost every function. As a result, the
verification is not at all straightforward.

▶ The theory uses a type VExprwhile Lean uses Expr.
▶ Expr uses “locally nameless” representation, while VExpr uses pure de Bruijn

variables
▶ Expr has additional primitives:

▶ natural number and string literals
▶ metavariables and free variables
▶ primitive projections

▶ Expr caches metadata like “do I have a free variable” inside every subexpression

▶ Some functions on natural numbers are overridden with a native
implementation using GMP (GNU Multiple Precision arithmetic library)

23 / 26

Progress

▶ There has been some recent (∼3 weeks) progress on the program verification
part

▶ Most theorems stated in terms of a simple one-sided Hoare logic
s |= (x : M α) {Q}

theorem checkType.WF {c : VContext} {s : VState}

(h1 : e.FVarsIn s.ngen.Reserves) :

RecM.WF c s (inferType e false) fun ty _ => ∃ e’ ty’,

c.TrExprS e e’ ∧ c.TrExprS ty ty’ ∧ c.HasType e’ ty’

24 / 26

Verification pays off

▶ Just last week, I was working on proving Expr.hasBoundVar is correct
▶ This function works by accessing a 64 bit metadata field
▶ I had to prove some bit tricks correct, but this worked out alright
▶ But the metadata calculates the depth of bound variables, which is a priori

unbounded, so this is an overflow situation
▶ The code was checking for overflow, but it used Lean’s panic function to do

it, and this function doesn’t actually crash the program, because it’s a pure
function with no exit path

▶ Instead, it returned the default value for the type (0), which is the worst
possible answer in this situation

▶ By pushing back the counterexample situation to the entry point I was able to
construct a concrete proof of false [#8554].

25 / 26

https://github.com/leanprover/lean4/pull/8554

Summary

▶ You can use Lean4Lean as a replacement for Lean’s kernel today
▶ The formalization is still under active development, not all mathematical

problems are solved yet
▶ There are a half dozen people working on MetaRocq, but Lean doesn’t have

enough type theorists involved. If you identify as such, come help out!

https://github.com/digama0/lean4lean

26 / 26

https://github.com/digama0/lean4lean

	Recall: DTT
	Verifying the kernel

