Lean4Lean:

Mechanizing the metatheory of Lean

Mario Carneiro

Chalmers University of Technology, University of Gothenburg

June 13, 2025

1/26

Introduction

2/26

Introduction

» I don’t think I need to explain what Lean is to this crowd

2/26

Introduction

» I don’t think I need to explain what Lean is to this crowd
» What will be relevant for this talk:
> Lean is an ITP (Interactive Theorem Prover)

2/26

Introduction

» I don’t think I need to explain what Lean is to this crowd
» What will be relevant for this talk:

> Lean is an ITP (Interactive Theorem Prover)
> It is based on Dependent Type Theory

2/26

Introduction

» I don’t think I need to explain what Lean is to this crowd
» What will be relevant for this talk:

> Lean is an ITP (Interactive Theorem Prover)
> It is based on Dependent Type Theory

> Specifically, an extension of Martin-L6f Type Theory (MLTT)
called the Calculus of Inductive Constructions (CIC)

2/26

Lean4Lean

> In 2019 I worked out the properties of LeanTT for my masters thesis

3/26

Lean4Lean

> In 2019 I worked out the properties of LeanTT for my masters thesis

> It has been 5 years since then and we have a new Lean version now, which
made some kernel changes

3/26

Lean4Lean

> In 2019 I worked out the properties of LeanTT for my masters thesis

> It has been 5 years since then and we have a new Lean version now, which
made some kernel changes

» Lean 4 has had a few (minor, short-lived) soundness bugs

3/26

Lean4Lean

> In 2019 I worked out the properties of LeanTT for my masters thesis

> It has been 5 years since then and we have a new Lean version now, which
made some kernel changes

» Lean 4 has had a few (minor, short-lived) soundness bugs
> So I've been working on a project to formalize the kernel

3/26

Lean4Lean

> In 2019 I worked out the properties of LeanTT for my masters thesis

> It has been 5 years since then and we have a new Lean version now, which
made some kernel changes

» Lean 4 has had a few (minor, short-lived) soundness bugs
> So I've been working on a project to formalize the kernel
> One sentence summary: “It’s MetaRocq, but for Lean”

3/26

Bootstrapping Lean

» Lean is about 80% written in Lean,
including:
> The parser
» The elaborator

> The tactic language Languages
> The metaprogramming framework — 1
> The LSP server Lean 86.2% ® C++11.9%

Shell 0.5% ® CMake 0.4%
® Nix 0.3% ® Python 0.2%
Other 0.5%

4/26

Bootstrapping Lean

» Lean is about 80% written in Lean,
including:
> The parser
» The elaborator

> The tactic language Languages
> The metaprogramming framework — 1
> The LSP server Lean 86.2% ® C++11.9%
» The exceptions are: Shell 0.5% ® CMake 0.4%
» The runtime (very small) ® Nix03% @ Python 0.2%
> The interpreter Other 0.5%

> Half of the backend of the old compiler
> The kernel

4/26

Bootstrapping Lean

» Lean is about 80% written in Lean,
including:
> The parser
» The elaborator

> The tactic language Languages
> The metaprogramming framework — 1
> The LSP server Lean 86.2% ® C++11.9%
> The exceptions are: Shell 0.5% @ CMake 0.4%
» The runtime (very small) ® Nix03% @ Python 0.2%
> The interpreter Other 0.5%

> Half of the backend of the old compiler
> The kernel

> Of these, one of them is both mathematically
interesting and soundness critical...

4/26

Lean4Lean

Project goals:

1.

Make a Lean kernel...
which is complete for everything the original can handle
and competitive with the original so that it can be considered as a replacement.

Write down the type theory of Lean (but formally, in Lean itself)
Prove structural properties about the type system

Prove the correctness of the implementation with respect to the specification

5/26

Lean4Lean

Project goals:

1.

Make a Lean kernel...
which is complete for everything the original can handle
and competitive with the original so that it can be considered as a replacement.

Write down the type theory of Lean (but formally, in Lean itself)
Prove structural properties about the type system

Prove the correctness of the implementation with respect to the specification

6/26

The Lean4Lean kernel

> A carbon copy of the C++ code
> It does all the same fancy tricks as the original, and no more
Union-find data structures for caching
Pointer equality testing
Bidirectional typechecking
Identical def.eq. heuristics
1 for structures, nested inductive types
% Naive implementation of substitution and reduction
> Suitable for differential fuzzing (e.g. it will get exactly the same counts for
definition unfolding etc.)
» Uses Lean’s own Expr type
> A few algorithms are reused when they were already available in Lean

7/26

The Lean4Lean kernel

leand4export leandlean ratio
Lean 37.01s 4461 s 1.21
Std Batteries 3249 s 45.74 s 1.40
Mathlib (+ Std + Lean) 44.54 min 58.79 min 1.32

» Performance is about 30% worse than the original
(How good this is depends on your temperament)

> Lean itself took hits of a similar order of magnitude when moving the
elaborator out of C++, and that was worth it for the improved extensibility
and development features

> It has since clawed back all the performance and then some by implementing
better algorithms that were difficult to get right in C++

>] want to experiment with better reduction strategies, this is never going to
happen with the current kernel

8/26

Recall: DTT

9/26

Dependent Type Theory

ex=x|clee|Ax:e.e|Vx:e.e| U,
I'is=-|T,x:e

(x:7)eT IF'rep:Vx:a.p Tre:a
lrx:t I'Feer:fle/x]

Ix:are:p
I'r(Ax:a.e):Vx:a.p e U, : U,
'ra:U, Ix:arp:U, 'te:a TrHa=p
'k Vx:a. B Uimax@mn) I'te:p

10/26

Buzzword bingo

Lean’s specific flavor of DTT has:

>
>

vV v.yYvyy

an impredicative universe Prop of propositions

algebraic universes (with max & imax,
where imax(a, b) := if b = 0 then 0 else max(a, b))

definitional proof irrelevance
no universe cumulativity
indexed, mutual and nested inductive types

an 7 reduction rule for lambdas and structures

11/26

Proof Irrelevance and its consequences
> We want to treat all proofs of a proposition as “the same”

I'tp:P Trh:p THW:p
I'rh=w

» This means that an equality has at most one proof (anti-HoTT)

» To prevent inconsistency, some inductive types cannot eliminate to a large
universe

Ix:a.px:=uT:P. (intro:Vx:a.px—T)
intro:Vx:a.(px—>3dy:a.py)
rec3:VC:Up.(Vx:a.px —>C) > (Ax:a.px) > C

» Some inductive types in [P eliminate to other universes, if they have “at most
one inhabitant by definition”, this is called subsingleton elimination

12/26

Actual axioms
> Propositional extensionality
propext:Vp,q:P.(p & q) > p=9q
> Quotient types

quot : Ya : Uy. (@« = a = P) — U,

mky,:a — a/r

lift,, :Vp.Vf:a—=B. (Vxy.rxy—>fx=fy) = a/r—=p

sound,, :Vxy.rxy - mkx =mky
litt Bf H(mkx)=fx
» The axiom of choice
nonempty a := uT : Up. (intro: a — T)
choice : Ya : U,. nonempty a — «a

13/26

DTT in ZFC

» There is an “obvious” model of DTT in ZFC, where we treat types as sets and
elements as elements of the sets

> The interpretation function [T +- e]], (or just [[e])) translates e into a set when
I'+e:aiswell typed and y € [I'] provides a values for the context

> Because of proof irrelevance and the axiom of choice (which implies LEM), we
must have [IP] := {0, {e}}

> For all higher universes, we interpret functions as functions, i.e. f € [Vx : a.]
if f is a function with domain [a] such that f(x) € [f]l. for all x € [a]

> With this translation, because of inductive types the universes must be very
large (Grothendieck universes). We let [U,,+1] = Vi, where x, is the n-th
inaccessible cardinal (if it exists)

14/26

Lean is consistent

Theorem (Soundness)

1.
2.

3.

IfT'+a: P, then [T+ a], C {e}

IfTre:aand VI + a) =0, then [T+ e]l, = o.

IfT v e : a, then there exists k € IN such that if there are k inaccessible cardinals, then
[T +el, € [T+ ally forall y € [T'].

IfT + e = ¢, then there exists k € IN such that if there are k inaccessible cardinals,
then [I' v ell, = [T +e'll, forall y € [I']].

As a consequence, Lean is consistent (there is no derivation of 1), if ZFC with
w inaccessibles is consistent.

More precisely, Lean is equiconsistent with

ZFC + {there are n inaccessibles | n < w}, because Lean models ZFC + n
inaccessibles for all n < w

15/26

Undecidability

» The type judgment is “almost” decidable, but not quite

» The problem is an interaction of subsingleton elimination (for Acc) and proof
irrelevance

> ask me if you want more details

16/26

Algorithmic typing judgment

» Lean resolves this by underapproximating the = and judgments

> If we introduceI' e & ¢ and I' I e : a judgments for “the thing Lean does”,
thenT -e: aimpliesT' Fe:aand '+ e & ¢ impliesI' + e =¢’, so Lean is an
underapproximation of the “true” typing judgment

> We will not attempt to prove completeness of the kernel
» I'+ e © € isnot transitive, and I IF e : a does not satisfy subject reduction
» 'te=¢ and I+ e: a are better behaved (by fiat), but undecidable

» In Lean4Lean we mostly concern ourselves with the abstract judgment

17/26

Unique typing: not yet a theorem

Conjecture (Unique typing)
IfTve:aandT re: B, thenT Fa = p.

Conjecture (Definitional inversion)

> IfT'+ Uy, = Uy, then m = n.
> [fTrVx:a.p=Vx:a' . ' thenTra=a"andT,x:a+p=f.
> IfT+ U, £Vx:a.p.

» When formalizing this proof from my thesis, I found a gap in the proof
> Istill believe the theorems are true

> There is an alternative path to the proof of soundness, but some of the kernel
optimizations depend on this theorem

18/26

The Church Rosser theorem

Theorem (for Lean)

IfT Fe:a,andT e~ e, e, then there exists ei,e& such that T + e; ~}. elf and
I'r e; =) eé.

> The statement uses two new relations, the x reduction ~», and proof
equivalence =,.

> ~»,. is a more aggressive version of Lean’s reduction relation that unfolds
subsingleton eliminators even on variables

> =, is “equality except at proof arguments” with 1 conversion.

The:a [x:iarespe’x Trp:P TrhH:p
Fre=pe FFAx:a.e=pe F+rh=, W

19/26

The Church Rosser theorem

» The v, reduction will reduce rec,.c C f x h (wWhere h : acc< x) to
f x (invy h) (Ay K. recace C f y (invy hy b))

so it is not strongly or weakly normalizing

> So it is similar to the untyped lambda reduction in that by allowing infinite
reduction we open the possibility of bringing divergent reductions back
together (within =)

» The proof of Church-Rosser as stated uses the Tait-Martin-Lof method (using
a parallel reduction relation >, and its almost deterministic analogue >>,)

20/26

Unique typing

» The proof used a stratification of the typing judgment for the induction order,
butI +, e : a is not closed under substitution.

» The Church-Rosser part of the proof seems okay, but we need a smarter
induction measure.

» For part 3 of the project, I have decided to set this proof aside and sorry it.
The Lean kernel really depends on this property for correctness.

> Type theorists wanted!

> I don’t think this is a crazy impossible problem, but I'm doing too many projects
at once (see: rest of the talk). would be very happy if someone picked this up

21/26

Verifying the kernel

22/26

Veritying the kernel

Lean doesn’t just implement the type theory as-is. It has a laundry list of
optimizations over the obvious definition in almost every function. As a result, the
verification is not at all straightforward.

> The theory uses a type VExpr while Lean uses Expr.

> Expr uses “locally nameless” representation, while VExpr uses pure de Bruijn
variables
> Expr has additional primitives:

> natural number and string literals
> metavariables and free variables
> primitive projections
> Expr caches metadata like “do I have a free variable” inside every subexpression
» Some functions on natural numbers are overridden with a native
implementation using GMP (GNU Multiple Precision arithmetic library)

23/26

Progress

» There has been some recent (~3 weeks) progress on the program verification
part

> Most theorems stated in terms of a simple one-sided Hoare logic

sk (x:Ma){Q)

theorem checkType.WF {c : VContext} {s : VState}
(hl : e.FVarsIn s.ngen.Reserves)
RecM.WF ¢ s (inferType e false) fun ty _ => d e’ ty’,
c.TrExprS e e’ A c.TrExprS ty ty’ A c.HasType e’ ty’

24/26

Verification pays off

»
>
>
>

Just last week, I was working on proving Expr.hasBoundVar is correct
This function works by accessing a 64 bit metadata field
I'had to prove some bit tricks correct, but this worked out alright

But the metadata calculates the depth of bound variables, which is a priori
unbounded, so this is an overflow situation

The code was checking for overflow, but it used Lean’s panic function to do
it, and this function doesn’t actually crash the program, because it’s a pure
function with no exit path

Instead, it returned the default value for the type (0), which is the worst
possible answer in this situation

By pushing back the counterexample situation to the entry point I was able to
construct a concrete proof of false [#8554].

25/26

https://github.com/leanprover/lean4/pull/8554

Summary

> You can use Lean4Lean as a replacement for Lean’s kernel today

» The formalization is still under active development, not all mathematical
problems are solved yet

» There are a half dozen people working on MetaRocq, but Lean doesn’t have
enough type theorists involved. If you identify as such, come help out!

https://github.com/digama®/lean4lean

26/26

https://github.com/digama0/lean4lean

	Recall: DTT
	Verifying the kernel

