
Unboxed Data with Dependent Types
Constantine Theocharis and Ellis Kesterton

University of St Andrews

TYPES 2025



Programming with unboxed data

unboxed data = no forced heap indirections

The 'standard' in languages like C/C++, Rust, etc.

Why?

Contiguous arrays with constant-time indexing.

Unboxed integers and packing small data.

Protocol buffers (e.g. network packets)

Data-driven design (e.g. entity-component systems)



What's the problem?

With dependent types, we cannot resolve the size in bytes
each type takes up, at compile time.

  foo : (b : Bool) -> if b then Int else (Int, Int)
  foo True = 1
  foo False = (1, 1)

Dependently typed (and most functional) languages will box
pretty much everything.



But what if we could?

Staged Compilation with 2LTT [Kovács 2022]



Goals
A language where stack-allocated unboxed data is the default

Explicit boxing primitive

Efficient and safe indexing into data

Zero-sized types = computational irrelevance

Minimal other primitives: arrays are iterated sigma types

2LTT-compatible for metaprogramming



Non-goals
Manual memory management/no GC

Holding references to stack values

Lifetime analysis, uniqueness or linearity

Unboxed closures



Setup & notation

Two-level type theory (Ty, Ty1, Tm, Tm1) , SOAS.

I will define and focus on the object fragment.

The meta fragment is standard dependent type theory.

Set           -- Universe of small types in the metatheory
TYPE : TYPE   -- Universe (type-in-type) in the meta level

(x : A) -> B  -- Π at any level
(x : A, B)    -- Σ at any level



What would this type system look like?
Layouts describe arrangements of data in memory.

  Layout : TYPE
  0, 1, ptr, idx : Layout
  _+_ : Layout -> Layout -> Layout

  ptr + idx + idx + 1 : Layout
  -- A pointer followed by two integers, followed by a byte



Object-level types are indexed by their layout.

Ty : Tm1 Layout -> Set
Tm : Ty l -> Set

Grothendiek-style universe

Type : Tm1 Layout -> Ty 0
Tm (Type l) = Ty l

Effectively:

Type l : Type 0



The standard type formers are now indexed by an appropriate
layout:

Functions are pointer-sized, and box their captures.

A : Ty a
B : Tm A -> Ty b
—————————————————————————
(x : A) '->' B x : Ty ptr



Pairs store their data contiguously

A : Ty a
B : Tm A -> Ty b
—————————————————————————
(x : A, B x) : Ty (a + b)

The unit type exists for all layouts, and acts like padding

—————————
() : Ty u



Example: ADTs as tagged unions

  Bool : Type 1

  Maybe : Type b -> Type (1 + b)
  Maybe T = (full : Bool, if full then T else ())
--           — 1 byte ——  ——————— b bytes ——————

  Just : T -> Maybe T
  Just x = (true, x)
            
  Nothing : Maybe T
  Nothing = (false, ())



Explicit boxing

A box introduces a heap indirection, always pointer-sized.

A : Type a       
————————————————
Box A : Type ptr

We can go back and forth using box  and unbox  operators.

 (box, unbox) : Box A ≃ A



 Byte : Type 1

 (1, 2, ..., 100) : (Byte, Byte, ..., Byte) : Type 100

 box (1, 2, ..., 100) : Box (Byte, Byte, ..., Byte) : Type ptr



Runtime-sized data

A lot of the time we actually work with data whose size is
only known at runtime! Prototypical example: dynamic arrays

Let's extend the layouts:

 Layout? : TYPE
 _*_ : Nat -> Layout? -> Layout?
 ...
 sta : Layout -> Layout?

Here Nat  is partially static, and _*_/_+_  have appropriate
reduction rules.



Now let's expand the universe of types:

 Type? : Tm1 Layout? -> Ty 0
 Type l = Type? (sta l)

Types of terms must still always be of a known layout

 Ty : Tm1 Layout -> Set



Generating runtime-sized data

We introduce a new type former that represents the
'generation' of runtime-sized data

 Make : Type? l -> Type ptr
 (emb, give) : {A : Type a} -> Make A ≃ A

A Make A  is thought of as *mut A -> () : construct an A  at
some given location.



How do we construct runtime-sized data?

Pairs and units generalise to the runtime-sized setting.

 () : Make ()
 (_,_) : (x : Make A) -> Make (B x) -> Make (x : A, B x)

Can generalise boxing to runtime-sized data.



Example: Arrays

Can be defined as iterated pairs

 Array : Type t -> (n : Nat) -> Type (n * t)
 Array T 0 = () -- Type (0 * l) = Type 0
 Array T (S n) = (t : T, Array T n)
                -- Type (S n * t) = Type (t + n * t)

 replicate : T -> (n : Nat) -> Make (Array T n)
 replicate t 0 = ()
 replicate t (S n) = (give t, replicate t n)



To actually store arrays we must somehow box their contents

 Vect : Type t -> Nat -> Type ptr
 Vect T n = Box (Array T n)

 List : Type t -> Type ptr
 List T = (n : Nat0, Vect T (dyn n))

Or work with them directly on the stack if their size is
known at compile-time.

(0x1, 0x2, 0x3) : Array 3 Word : Type (word + word + word)



Computational irrelevance

Possible with the existence of zero-sized types.

 0_ : Type a -> Type 0
 irr : A -> 0 A
 already : 0 0 A -> 0 A



Irrelevant terms can be eliminated into zero-sized types.

 P : 0 A -> Type 0
 p : (x : A) -> P (irr x)
 a : 0 A
 ————————————————————————————
 let (irr x) = a in p x : P a

With elaboration/sugar, similar to QTT with {0, ω}.

 at : {n : 0 Nat} -> Fin n -> Vect T n -> T



Indexing

Iterated projections of data occupy intermediate stack space.

Instead we can build up and store indices that are
'instantly' able to access their target.

  A : Type? a
  B : 0 A -> Type? b
  ——————————————————————————
  (x : A) >> B x : Type idx

(x : A) >> B x  is an index into some x : A  producing a B x .
It is compiled as an integer offset.



When A  is sized, we get an application operation

 _[_] : (a : A) -> ((x : A) >> B x) -> Make (B a)

However, we do not have lambda abstractions. Instead, we have
a 'section' composition operation

 f : (x : A) >> B x
 g : (x : 0 A) -> (y : B x) >> C y
 —————————————————————————————————
 f . g : (x : A) >> C x[f]



The dependent pair projections come in this form

 fst : (x : A, B x) >> A
 snd : (p : (x : A, B x)) >> B p[fst]

We can thus compute array indices

 at : Fin n -> Array T n >> T
 at FZ = fst
 at (FS i) = snd . get i



 tape : Array 100 Symbol
 ———————————————————————
 tape[at 54] : Symbol

 players : Game >> List Player
 game : Game
 —————————————————————————————
 game[players . at 3] : Player



Overview

-- generating runtime-sized terms
Make : Type? a -> Type ptr

-- heap allocation
Box : Type? a -> Type ptr

-- irrelevant data 
0_ : Type? a -> Type 0

-- indexing into data
_>>_ : (A : Type? a) -> (0 A -> Type? b) -> Type idx



Staging and compilation
Layout  gets translated to a fully static representation, can
be computed to a byte size at compile time.

Layout?  still contains object-level terms, can be computed to
a byte size at runtime.



Memory management
Reference counting can be implemented because we know where
the pointers are.

Alternatively, one could use a plug-and-play garbage
collection such as Bohm GC.



Mutation
Can be handled using an ST -like monad as usual.

A better solution might involve sub-structural features such
as linearity or uniqueness.



Current progress
Shallow embedding in Agda ✓

Untyped model that justifies irrelevance ✓

Implementation of this system  WIP
github.com/kontheocharis/unboxed-idr

Semantics ? ? ?

file:///Users/constantine/Library/CloudStorage/GoogleDrive-kontheocharis@gmail.com/My%20Drive/obsidian/main/PhD/Papers/TYPES%202025/Presentation.md


Future work
Finish the implementation, write some examples.

Unboxed closures are possible through a closed modality.

Investigate dependently-sized data.

Investigate sub-structural object theories.

Inductive types can be added, as views of unboxed data.



Dependently-sized data

Our layouts are still not able to capture the idea of
dependently-sized data.

For example, a UDP packet header contains a length field,
which determines the amount of bytes that follow the header.

We cannot have

UdpPacket : Type? l

because l  must be determined by UdpPacket 's inhabitants.



The solution

Add more layouts!

 Layout?? : TYPE
 -- Layout < Layout? < Layout??
 var : (A : Type a) -> (A -> Layout??) -> Layout??
 Var : (A : Type a)
       -> {b : A -> Layout??}
       -> (B : (h : 0 A) -> Type?? (b a))
       -> Type?? (var A b)
 makeVar : (a : Make A) -> (b : Make (B a)) -> Make (Var A B)

Appropriate generalisations of existing type formers.



UDP packets

  UdpHeader : Type 8
  UdpHeader = (
      src : NetU16,  -- NetU16 : Type 2
      dest : NetU16,
      length: NetU16,
      checksum: NetU16
    )

  UdpPacket : Type?? (var (h : UdpHeader) | 1 * toNat h.length)
  UdpPacket = Var (h : UdpHeader) | Array Byte (toNat h.length)


