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Project aims

• Develop technology for domain-specific languages (DSLs) in Lean to extract mathlib-
relevant proofs from synthetic reasoning.
‣

‣

‣
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relevant proofs from synthetic reasoning.
‣ Apply synthetic homotopy theory results to concrete constructions (e.g. pushforward

of an isofibration of groupoids is an isofibration)
‣ Apply internal language reasoning for sheaves. (Yiming Xu and Kenji Maillard 2025.

Geometric reasoning in Lean)
‣ Apply model theoretic results to classical algebra (e.g. Ax-Grothendieck.) (Flypitch/

Mathlib.)
• Semantics for HoTT formalised in Lean.
‣ Sozeau and Tabareau 2014. Towards an internalization of the groupoid model of type

theory
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HoTT0 syntax

HoTT0 is a fragment of HoTT, meaning
•
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Noting that
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•
•
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HoTT0 syntax

HoTT0 is a fragment of HoTT, meaning
• Martin-Löf Type Theory (MLTT) with universes 𝑈0 : 𝑈1 : ⋯ : 𝑈𝑛 and Π, Σ, Id

for each universe.
• with two axioms: univalence for subuniverses of sets (0-truncated types),

global functional extensionality.

Noting that
• HoTT0 admits the structure identity principle for sets-level mathematics.
• Universes are not cumulative.
• Finitely many universes.
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Natural model semantics - universes

In a presheaf category SetCtxop
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Natural model semantics - universes

In a presheaf category SetCtxop

tp

⟦𝐴⟧

Tm

Ty𝑦⟦Γ⟧
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Natural model semantics - universes

In a presheaf category SetCtxop

tp

⟦𝐴⟧

Tm

Ty𝑦⟦Γ⟧

𝑦⟦Γ.𝐴⟧
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Natural model semantics - Π types

𝑃tp tp tp
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Natural model semantics - Π types
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Theorems for Mathlib

• Lean formalisation of polynomial endofunctors (a.k.a containers). See
github.com/sinhp/Poly project.

•

•
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Theorems for Mathlib

• Lean formalisation of polynomial endofunctors (a.k.a containers). See
github.com/sinhp/Poly project.

• Lean formalisation of profunctors. Universal property of polynomial
endofunctors is composition of profunctor isomorphisms

  /-- `C(Γ, PₚX) ≅ Σ(b : Γ ⟶ B), C(b*p, X)` -/
  def iso_Sigma (P : UvPoly E B) :
      P.functor ⋙₂ coyoneda (C := C) ≅ P.partProdsOver :=
    ... ≅ ... ≅ ... ≅ ...

•
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Theorems for Mathlib

• Lean formalisation of polynomial endofunctors (a.k.a containers). See
github.com/sinhp/Poly project.

• Lean formalisation of profunctors. Universal property of polynomial
endofunctors is composition of profunctor isomorphisms

  /-- `C(Γ, PₚX) ≅ Σ(b : Γ ⟶ B), C(b*p, X)` -/
  def iso_Sigma (P : UvPoly E B) :
      P.functor ⋙₂ coyoneda (C := C) ≅ P.partProdsOver :=
    ... ≅ ... ≅ ... ≅ ...

• However this currently has significant performance issues (due to heavy
rfl proofs).
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Interpretation of HoTT0 into natural model semantics

• Interpretation is a partial function on raw terms, that is defined on well-
formed types and terms.

•

•
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Interpretation of HoTT0 into natural model semantics

• Interpretation is a partial function on raw terms, that is defined on well-
formed types and terms.

• We have constructed a sound interpretation of a fragment (with only Σ and
Π types) into a class of natural models.

•
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Interpretation of HoTT0 into natural model semantics

• Interpretation is a partial function on raw terms, that is defined on well-
formed types and terms.

• We have constructed a sound interpretation of a fragment (with only Σ and
Π types) into a class of natural models.

• Modular approach: we can plug in any natural model to this abstract
interpretation.
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Groupoid model of HoTT0

• Category of contexts Ctx = Grpd is category of “large” groupoids (with
(Type 5)-sized objects and arrows).

•

•
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Groupoid model of HoTT0

• Category of contexts Ctx = Grpd is category of “large” groupoids (with
(Type 5)-sized objects and arrows).

• Ty0 = 𝑦(Grpd≅) is (Yoneda of) the core of the category of “small” groupoids
(with (Type 0)-sized objects and arrows).

•
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Groupoid model of HoTT0

• Category of contexts Ctx = Grpd is category of “large” groupoids (with
(Type 5)-sized objects and arrows).

• Ty0 = 𝑦(Grpd≅) is (Yoneda of) the core of the category of “small” groupoids
(with (Type 0)-sized objects and arrows).

• A type 𝐴 : 𝑦(Γ) → Ty0 is equivalent to a functor Γ → Grpd from the “large”
groupoid Γ into the category of “small” groupoids.
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Necessary evil

• Mathlib convention is to avoid “evil” category
theory: equal objects, equal functors, isomorphic
categories…

•
•

•
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Necessary evil

• Mathlib convention is to avoid “evil” category
theory: equal objects, equal functors, isomorphic
categories…

• Groupoid model necessitates “evil” constructions. 𝐴

∫(𝐴)

Γ

PCat

Cat
• Proven Grothendieck construction ∫(𝐴) is a strict pullback of PCat.

Developed API for pullbacks of categories.
•
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Necessary evil

• Mathlib convention is to avoid “evil” category
theory: equal objects, equal functors, isomorphic
categories…

• Groupoid model necessitates “evil” constructions. 𝐴

∫(𝐴)

Γ

PCat

Cat
• Proven Grothendieck construction ∫(𝐴) is a strict pullback of PCat.

Developed API for pullbacks of categories.
• Note: Mathlib definitions are not general enough: categories in the

pullback square are not in the same category due to universe levels.

  Γ : Type u
  Cat : Type (u+1)
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DTT hell - rewrite along paths over paths.

• Causes difficulties in formalising “evil” category theory (but a more general
problem).

•

•

•
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DTT hell - rewrite along paths over paths.

• Causes difficulties in formalising “evil” category theory (but a more general
problem).

• If x = y : A and B : A -> Type then B x = B y : Type, but cannot naively
rewrite p x : B x for p y : B y.

•

•
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problem).

• If x = y : A and B : A -> Type then B x = B y : Type, but cannot naively
rewrite p x : B x for p y : B y.

• Developed (credit to Aaron Liu) Lean tactic rw! which can often (not
always) rewrite such expressions.
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DTT hell - rewrite along paths over paths.

• Causes difficulties in formalising “evil” category theory (but a more general
problem).

• If x = y : A and B : A -> Type then B x = B y : Type, but cannot naively
rewrite p x : B x for p y : B y.

• Developed (credit to Aaron Liu) Lean tactic rw! which can often (not
always) rewrite such expressions.

• Towards a tactic for rewriting along Lean’s heterogeneous equality HEq.
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Domain-specific language for HoTT0

hott def idfun : Π {A : Type}, A → A := fun a => a
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Domain-specific language for HoTT0

hott def idfun : Π {A : Type}, A → A := fun a => a

-- { l := 1,
--   val := lam 1 0 (univ 0) (lam 0 0 (el (bvar 0)) (bvar 0)),
--   tp := pi 1 0 (univ 0) (pi 0 0 (el (bvar 0)) (el (bvar 1))),
--   wf := (⋯ : [] ⊢[l] val ≡ val : tp) }
#eval! idfun.checked -- type checker
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Domain-specific language for HoTT0

hott def idfun : Π {A : Type}, A → A := fun a => a

-- { l := 1,
--   val := lam 1 0 (univ 0) (lam 0 0 (el (bvar 0)) (bvar 0)),
--   tp := pi 1 0 (univ 0) (pi 0 0 (el (bvar 0)) (el (bvar 1))),
--   wf := (⋯ : [] ⊢[l] val ≡ val : tp) }
#eval! idfun.checked -- type checker

-- type interpreted in groupoid model
noncomputable def GroupoidModel.idfun.interpType :
    ⊤_ _ ⟶ GroupoidModel.Ctx.ofCategory.{1,4} Grpd.{1,1} :=
  (uHomSeqPis.interpType ⋯
    idfun.checked.wf.wf_tp ⋯ uHomSeqPis.nilCObj ⋯).app (.op <| ⊤_ _)
(𝟙 _)
Page 12 of 15 | Joseph Hua | HoTTLean

DSL HoTT0 Natural
models

Groupoid
model ,



Project progress

DSL
proof

assistant

HoTT0
syntax

Natural
model

semantics

Groupoid
(natural)
model

typechecker 𝑈𝑛, Σ, Π, Id 𝑈𝑛, Σ, Π, Id 𝑈𝑛, Σ, Π, Id

+ Set Univalence + Function Extensionality
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Next steps and ways to contribute

Repository: github.com/sinhp/groupoid_model_in_lean4

Possible ways to contribute:
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Next steps and ways to contribute

Repository: github.com/sinhp/groupoid_model_in_lean4

Possible ways to contribute:
• Polynomial functor library
• Rewriting tactics (e.g. HEq)
• Formalisation of identity types
• User interface for DSLs
• Profunctor library performance issues

LMU student thesis project.
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