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Motivation: Directed type theory

Type theories with refl/.J are intrinsically about symmetric equality.
Directed type theory is the generalization to “directed equality”.
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Motivation: Directed type theory

Type theories with refl/.J are intrinsically about symmetric equality.
Directed type theory is the generalization to “directed equality”.

The interpretation of directed type theory with (I-)categories:

Types ~~ Categories
Terms ~» Functors
Points of a type ~» Objects of a category
Equalities e : a = b ~ Morphisms e : hom(a, b)
=4: Ax A — Type ~» hom¢ : C°P xC — Set
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Motivation: Directed type theory

Type theories with refl/.J are intrinsically about symmetric equality.
Directed type theory is the generalization to “directed equality”.

The interpretation of directed type theory with (I-)categories:

Types ~~ Categories
Terms ~» Functors
Points of a type ~» Objects of a category
Equalities e : a = b ~ Morphisms e : hom(a, b)
=4: Ax A — Type ~» hom¢ : C°P xC — Set

— Now types have a polarity, C and C°P, i.e., the opposite category.
— Now equalities e : hom(a, b) have directionality.
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Current approaches to directed type theory

e Semantically, refl should be id, € homc(c, ¢) for ¢ : C.
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e Semantically, refl should be id, € homc(c, ¢) for ¢ : C.

® Transitivity of directed equality ~» composition of morphisms in C.
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Current approaches to directed type theory

e Semantically, refl should be id, € homc(c, ¢) for ¢ : C.

® Transitivity of directed equality ~» composition of morphisms in C.
(id)
()

[z:CP c:(C] hom(z, ¢) F hom(z, c)
[a:C°P,b:C,c:C] hom(a,b), hom(b,c) F hom(a,c)
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Current approaches to directed type theory

e Semantically, refl should be id, € homc(c, ¢) for ¢ : C.

® Transitivity of directed equality ~» composition of morphisms in C.
(id)
()

[z:CP c:(C] hom(z, ¢) F hom(z, c)
[a:C°P,b:C,c:C] hom(a,b), hom(b,c) F hom(a,c)

® However, directed type theory is not so straightforward:
a:C

refl...7 : home(a, a)

® Problem: rule is not functorial w.r.t. variance of hom¢ : C°P x C — Set,
since a : C appears both contravariantly and covariantly.
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Current approaches to directed type theory

¢ Semantically, refl should be id. € homc(c, ¢) for ¢ : C.

® Transitivity of directed equality ~» composition of morphisms in C.
(id)
()

[z : CP,c: C] hom(z, ¢) F hom(z, ¢)
[a:C°,b:C,c: C] hom(a,b), hom(b,c) - hom(a,c)

® However, directed type theory is not so straightforward:
a:C a : Ceore

reflg...? : home(a, a) - refl, : hom(i°P(a),i(a))

® Problem: rule is not functorial w.r.t. variance of hom¢ : C°P x C — Set,
since a : C appears both contravariantly and covariantly.

® A possible approach to DTT in Cat: use groupoids!
— Use the maximal subgroupoid C' to collapse the two variances.
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Current approaches to directed type theory

¢ Semantically, refl should be id. € homc(c, ¢) for ¢ : C.

® Transitivity of directed equality ~» composition of morphisms in C.
(id)
()

[z : CP,c: C] hom(z, ¢) F hom(z, ¢)
[a:C°,b:C,c: C] hom(a,b), hom(b,c) - hom(a,c)

® However, directed type theory is not so straightforward:
a:C a : Ceore

reflg...? : home(a, a) - refl, : hom(i°P(a),i(a))

® Problem: rule is not functorial w.r.t. variance of hom¢ : C°P x C — Set,
since a : C appears both contravariantly and covariantly.

® A possible approach to DTT in Cat: use groupoids!
— Use the maximal subgroupoid C' to collapse the two variances.

® Then a J-like rule is validated, but again using groupoidal structure.
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Dinatural directed first-order type theory

We show a first-order non-dependent directed type theory, with semantics:
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Dinatural directed first-order type theory

We show a first-order non-dependent directed type theory, with semantics:

Syntax ~» Semantics
Types ~» Categories

Contexts ~» Product of categories
Terms ~» Functors F': C — D
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Dinatural directed first-order type theory

We show a first-order non-dependent directed type theory, with semantics:

Syntax ~» Semantics

Types ~» Categories
Contexts ~» Product of categories
Terms ~» Functors F': C — D
Predicates ~~ Dipresheaves, i.e., functors P : C°? x C — Set
~ e.g., hom-functors C°P x C — Set

Entailments ~~ Dinatural transformations (not required to compose)
z:C

Quantifiers ~~ Ends / P(z,z), coends P(z,z).

z:C
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Dinatural directed first-order type theory
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Terms ~» Functors F': C — D
Predicates ~~ Dipresheaves, i.e., functors P : C°? x C — Set
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® Dinaturality solves the variance issue without groupoids,
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Entailments ~~ Dinatural transformations (not required to compose)
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® Dinaturality solves the variance issue without groupoids,
and tells what syntactic restriction to put on J to avoid symmetry.
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Dinatural directed first-order type theory

We show a first-order non-dependent directed type theory, with semantics:

Syntax ~» Semantics

Types ~» Categories
Contexts ~» Product of categories
Terms ~» Functors F': C — D
Predicates ~~ Dipresheaves, i.e., functors P : C°? x C — Set
~ e.g., hom-functors C°P x C — Set

Entailments ~~ Dinatural transformations (not required to compose)
z:C

Quantifiers ~~ Ends / P(z,z), coends P(z,z).

z:C

® Dinaturality solves the variance issue without groupoids,

and tells what syntactic restriction to put on J to avoid symmetry.
® We give “logical rules” to (co)ends as the directed quantifiers of DTT:
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Dinatural directed first-order type theory

We show a first-order non-dependent directed type theory, with semantics:

Syntax ~» Semantics
Types ~» Categories
Contexts ~» Product of categories
Terms ~» Functors F': C — D
Predicates ~~ Dipresheaves, i.e., functors P : C°? x C — Set
~ e.g., hom-functors C°P x C — Set

Entailments ~~ Dinatural transformations (not required to compose)
z:C

Quantifiers ~~ Ends / P(z,z), coends P(z,z).

z:C

® Dinaturality solves the variance issue without groupoids,
and tells what syntactic restriction to put on J to avoid symmetry.

® We give “logical rules” to (co)ends as the directed quantifiers of DTT:
~> rules of DTT give simple proofs in category theory, with hom as =.

® We do first-order because (co)end calculus is typically first-order.
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Syntax — judgements for types

® Judgement for types:

Ctype Ctype D type C type D type
C°P type C x D type [C, D] type T type

e Semantics: C type is interpreted by a category [C].
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Syntax — judgements for types

® Judgement for types:

Ctype Ctype D type C type D type
C°P type C x D type [C, D] type T type

e Semantics: C type is interpreted by a category [C].

e Definitional equality on types | C = C’ type | is such that

(copyer =¢C
(C' x D)°P = (C°P x D°P
([C, D])*P = [C°P, D°P]
(T)ep =T
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Syntax — judgements for types

® Judgement for types:

Ctype Ctype D type C type D type
C°P type C x D type [C, D] type T type

e Semantics: C type is interpreted by a category [C].

e Definitional equality on types | C = C’ type | is such that

(copyer =¢C
(C' x D)°P = (C°P x D°P
([C, D])*P = [C°P, D°P]
(T)ep =T

® A judgement for contexts, i.e., lists of types, with also I'°P ctx.
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Syntax — judgements for types

® Judgement for types:

Ctype Ctype D type C type D type
C°P type C x D type [C, D] type T type

e Semantics: C type is interpreted by a category [C].

e Definitional equality on types | C = C’ type | is such that

(copyer =¢C
(C' x D)°P = (C°P x D°P
([C, D])*P = [C°P, D°P]
(T)ep =T

® A judgement for contexts, i.e., lists of types, with also I'°P ctx.

® Semantics: contexts are interpreted as the product of categories.
[T :=[C1,...Cpl] :=[Ci] x --- x [Ch]
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Directed type theory: judgements for terms

® A judgement |I' -t : C| for simply-typed terms.

¢ Semantics: terms are interpreted as functors [t] : [I'] — [C].

Andrea Laretto Directed equality with dinaturality TYPES 2025



Directed type theory: judgements for terms

® A judgement |I' -t : C| for simply-typed terms.

¢ Semantics: terms are interpreted as functors [t] : [I'] — [C].
'sz:C '-s:C TkFt:D

'tz:C TH!:T TF(st):CxD
I'Fp:CxD T'kFp:CxD

F'Fmi(p):C TrFmp):D
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Directed type theory: judgements for terms

® A judgement |I' -t : C| for simply-typed terms.

¢ Semantics: terms are interpreted as functors [t] : [I'] — [C].

'sz:C '-s:C TkFt:D
'tz:C TH!:T TF(st):CxD
I'Fp:CxD T'kFp:CxD
F'Fmi(p):C TrFmp):D
r-t:C
TP | {P : P

¢ Definitional equality on terms |[T' ¢ =¢': C|is such that (t°P)°P = ¢.
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Syntax — predicates

® A judgement | [I'] P prop | for predicates.

¢ Semantics: dipresheaves, i.e., functors [P] : [I']°° x [I'] — Set.
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Syntax — predicates

® A judgement | [I'] P prop | for predicates.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°° x [I'] — Set.
® Formation rules:
[[] P prop  [I'] Q prop [I] P prop  [I'] Q prop
[['] P x @ prop [['] P = Q prop
[,z : C] P(x) prop [,z :C] P(x) prop
T] [“¢ P(z) prop [T [p.c P(x) prop

[} T prop
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Syntax — predicates

® A judgement | [I'] P prop | for predicates.
¢ Semantics: dipresheaves, i.e., functors [P] : [I']°° x [I'] — Set.

® Formation rules:
[I] P prop  [I]Q prop [I'] P prop  [I']Q prop
[['] P x @ prop [['] P = Q prop
[,z : C] P(x) prop [,z :C] P(x) prop
] [%° P(z) prop [T [,.c P(x) prop

[} T prop

® Semantics: X is the pointwise product of dipresheaves in Set,
= is the pointwise hom in Set, (co)ends are always taken in Set.
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Syntax — predicates (contd.)

® Directed equality predicates:
IPI'ks:C° TP T'Ht:C
[I] home(s,t) prop

® Key idea: | can use variables from I' or from I'°P in the terms s, t.
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Syntax — predicates (contd.)

® Directed equality predicates:
IPI'ks:C° TP T'Ht:C
[I] home(s,t) prop

® Key idea: | can use variables from I' or from I'°P in the terms s, t.

® We indicate with T : C°P when variables are taken from I'°P.
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Syntax — predicates (contd.)

® Directed equality predicates:
IPI'ks:C° TP T'Ht:C
[I] home(s,t) prop

® Key idea: | can use variables from I' or from I'°P in the terms s, t.
® We indicate with T : C°P when variables are taken from I'°P.

® This is what allows us to write these entailments:

[z : C] O Frefl :hom(z, x)
[a:C° b:C,c:C] hom(a,b), hom(b,c),® Ftrans: hom(a, c)
[a:C°b:C)| hom(a,b), ® Fsym : hom(b, @)
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Syntax — predicates (contd.)

® Directed equality predicates:
IPI'ks:C° TP T'Ht:C
[I] home(s,t) prop

® Key idea: | can use variables from I' or from I'°P in the terms s, t.
® We indicate with T : C°P when variables are taken from I'°P.

® This is what allows us to write these entailments:

[z : C] O Frefl :hom(z, x)
[a:C° b:C,c:C] hom(a,b), hom(b,c),® Ftrans: hom(a, c)
[a:C°b:C)| hom(a,b), ® Fsym : hom(b, @)

® Polarity of a position: positive when taken from I', negative when I'°P.
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Syntax — predicates (contd.)

® Directed equality predicates:
IPI'ks:C° TP T'Ht:C
[I] home(s,t) prop

® Key idea: | can use variables from I' or from I'°P in the terms s, t.
® We indicate with T : C°P when variables are taken from I'°P.

® This is what allows us to write these entailments:

[z : C] O Frefl :hom(z, x)
[a:C° b:C,c:C] hom(a,b), hom(b,c),® Ftrans: hom(a, c)
[a:C°b:C)| hom(a,b), ® Fsym : hom(b, @)

® Polarity of a position: positive when taken from I', negative when I'°P.

® Variance of a variable:
natural when always taken from T,
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Syntax — predicates (contd.)

® Directed equality predicates:
IPI'ks:C° TP T'Ht:C
[I] home(s,t) prop

® Key idea: | can use variables from I' or from I'°P in the terms s, t.
® We indicate with T : C°P when variables are taken from I'°P.

® This is what allows us to write these entailments:

[z : C] O Frefl :hom(z, x)
[a:C° b:C,c:C] hom(a,b), hom(b,c),® Ftrans: hom(a, c)
[a:C°b:C)| hom(a,b), ® Fsym : hom(b, @)

® Polarity of a position: positive when taken from I', negative when I'°P.

® Variance of a variable:
natural when always taken from T,
dinatural (i.e., mixed-variance) when sometimes from I', sometimes I'°P.
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Syntax — entailments

® A judgement |[I'] ® - a : P|for entailments (® is a list of predicates).
[x:C,y:D,T| ®=,,7,y,...) Fa: P(T,2,7,y,...)
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Syntax — entailments

® A judgement |[I'] ® - a : P|for entailments (® is a list of predicates).
[x:C,y:D,T| ®=,,7,y,...) Fa: P(T,2,7,y,...)
® Semantics: interpreted as dinatural transformations [« : [®] == [P]:

Vo € [T, ay : [®](z,2) — [P](z, x)
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Syntax — entailments

® A judgement |[I'] ® - a : P|for entailments (® is a list of predicates).
[x:C,y:D,T| ®=,,7,y,...) Fa: P(T,2,7,y,...)
® Semantics: interpreted as dinatural transformations [« : [®] == [P]:
Vo € [T, ay : [®](z,2) — [P](z, x)
® Dinaturals do not always compose; they do with natural transformations.

P—Q@-—~R—T
pP—=T

Andrea Laretto Directed equality with dinaturality TYPES 2025



Syntax — entailments

® A judgement |[I'] ® - a : P|for entailments (® is a list of predicates).
[x:C,y:D,T| ®=,,7,y,...) Fa: P(T,2,7,y,...)
® Semantics: interpreted as dinatural transformations [« : [®] == [P]:
Vo € [T, ay : [®](z,2) — [P](z, x)
® Dinaturals do not always compose; they do with natural transformations.

P—Q@-—~R—T
pP—=T
e We capture left/right cut rules with naturals, e.g.: nat on the right:
P, @Q do not depend on T’
[z:C. T ®(z,2)Fv :P(z2)
[a:C%.b:C,T) k: P(a,b),®(@b) - alk] : Q(a,b)
2 C.T] (2, 2) F al] : Q. 2)

(cut-nat)
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Syntax — entailments

® A judgement |[I'] ® - a : P|for entailments (® is a list of predicates).
[x:C,y:D,T| ®=,,7,y,...) Fa: P(T,2,7,y,...)
® Semantics: interpreted as dinatural transformations [« : [®] == [P]:
Vo € [T, ay : [®](z,2) — [P](z, x)

® Dinaturals do not always compose; they do with natural transformations.

P—Q@—=——R—T

pP—=T
e We capture left/right cut rules with naturals, e.g.: nat on the right:
P, @Q do not depend on T’
[z:C. T ®(z,2)Fv :P(z2)
[a:C%.b:C,T) k: P(a,b),®(@b) - alk] : Q(a,b)
21O, 8(z,2) F al] : Q)

Takeaway: whenever we need dinats to compose, they do because of this.
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T'] ®F refl, : home(Z, x)

® Semantics: refl is validated precisely by identity morphisms in [C].

Andrea Laretto Directed equality with dinaturality TYPES 2025



Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T'] ®F refl, : home(Z, x)

e Semantics: refl is validated precisely by identity morphisms in [C]
® Directed equality elimination:

[z:C,T]

Dz,

Z)F h: P(Z,2)

[a:C°.b:C,T e:homg(a,b), ®(@,b) - J(h): P(a,b) /)
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T'] ®F refl, : home(Z, x)

® Semantics: refl is validated precisely by identity morphisms in [C].
® Directed equality elimination:

[z:C,T] &(z,z) - h: P(Z,z2)

[a:C°.b:C,T e:homg(a,b), ®(@,b) - J(h): P(a,b) /)

If | have a directed equality e : homg(a, b) in context,
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T'] ®F refl, : home(Z, x)

® Semantics: refl is validated precisely by identity morphisms in [C].
® Directed equality elimination:

[z:C,T] &(z,z) - h: P(Z,z2)

[a:C°.b:C,T e:homg(a,b), ®(@,b) - J(h): P(a,b) /)

If | have a directed equality e : homg(a, b) in context,

» | can contract it only if a,b appear only positively in the conclusion P,
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T'] ®F refl, : home(Z, x)
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[z:C,T] &(z,z) - h: P(Z,z2)

[a:C°.b:C,T e:homg(a,b), ®(@,b) - J(h): P(a,b) /)

If | have a directed equality e : homg(a, b) in context,

» | can contract it only if a,b appear only positively in the conclusion P,
» and a, b appear only negatively in the context ®.
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Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T'] ®F refl, : home(Z, x)

® Semantics: refl is validated precisely by identity morphisms in [C].
® Directed equality elimination:

[z:C,T] &(z,z) - h: P(Z,z2)
[a:C°.b:C,T e:homg(a,b), ®(@,b) - J(h): P(a,b)

J

If | have a directed equality e : homg(a, b) in context,

» | can contract it only if a,b appear only positively in the conclusion P,
» and a, b appear only negatively in the context ®.

» Then, it is enough to prove that P holds “on the diagonal” z : C.

Andrea Laretto Directed equality with dinaturality TYPES 2025 9/19



Syntax — rules for hom

® Directed equality introduction:

(refl)
[:C,T'] ®F refl, : home(Z, x)

® Semantics: refl is validated precisely by identity morphisms in [C].
® Directed equality elimination:

[z:C,T] &(z,z) - h: P(Z,z2)
[a:C°.b:C,T e:homg(a,b), ®(@,b) - J(h): P(a,b)

J

If | have a directed equality e : homg(a, b) in context,
» | can contract it only if a,b appear only positively in the conclusion P,
» and a, b appear only negatively in the context ®.

» Then, it is enough to prove that P holds “on the diagonal” z : C.

® Semantics: functoriality of [®] and [P].
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Directed type theory with dinaturality — examples

Example (Transitivity of directed equality)

Composition is natural in a : C°P, ¢ : C' and dinatural in b : C"

(var)

[z:C,c:C] g :hom(z,¢c) - g : hom(z, ¢) )

[a:C% b:C,c:C] f:hom(a,b), g:hom(b,c)F J(g) : hom(a,c)
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Directed type theory with dinaturality — examples

Example (Transitivity of directed equality)

Composition is natural in a : C°P, ¢ : C' and dinatural in b : C"

(var)

[z:C,c:C] g :hom(z,¢c) - g : hom(z, ¢) )

[a:C% b:C,c:C] f:hom(a,b), g:hom(b,c)F J(g) : hom(a,c)

We contract f : hom(a, b). Rule (J) can be applied: a,b appear only
negatively in ctx (a does not) and positively in conclusion (b does not).
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Directed type theory with dinaturality — examples

Example (Congruence)

Functoriality of terms P is natural in a : C°P,b: C for terms C'F F : D:
(refl)

[z : D] -t refl, : homp(Z, x)
[2:C] -+ F*(refly) : homp(F(z), F(z))
[a:C° b:C|e:homec(a,b) - J(F*(refly)) : homp(F(a), F(b))

(idx)
(/)
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Directed type theory with dinaturality — examples
Example (Congruence)

Functoriality of terms P is natural in a : C°P,b: C for terms C'F F : D:
(refl)

[z : D] -t refl, : homp(Z, x)
[2:C] -+ F*(refly) : homp(F(z), F(z))
[a:C° b:C|e:homec(a,b) - J(F*(refly)) : homp(F(a), F(b))

(idx)
(/)

Example (Transport)

Functoriality of predicates P is natural in b : C, dinatural in a : C:

(var)
(/)

[2:C]p: P(z2)Fp: P(z)
[a:C°P.b:C]e:hom(a,b),p: P(@)kF J(p): P(b)
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Directed type theory with dinaturality — non-examples

Failure of symmetry for directed equality

The restrictions do not allow us to obtain directed equality is symmetric:
[a:C°,b:C] e:hom(a,b) I/ sym : hom(b, @)

hom(a, b) cannot be contracted: a,b must appear positively in conclusion.

Andrea Laretto Directed equality with dinaturality TYPES 2025



Directed type theory with dinaturality — non-examples

Failure of symmetry for directed equality

The restrictions do not allow us to obtain directed equality is symmetric:
[a:C°,b:C] e:hom(a,b) I/ sym : hom(b, @)

hom(a, b) cannot be contracted: a,b must appear positively in conclusion.

¢ Semantically, the interval [ := {0 — 1} is a counterexample to
derivability of this entailment in the syntax.
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Directed type theory: equational theory

® A judgement ‘ eérFa=p:P ‘ for equality of entailments (in Set).
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Directed type theory: equational theory

® A judgement ‘ eérFa=p:P ‘ for equality of entailments (in Set).

® The computation rule for J is expressed using equality of entailments:

[2:C,T] @+ J(h)[refl,] = h : P (/-comp)

where we used cut of dinaturals (with refl), which for J always works!
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Directed type theory: equational theory

® A judgement ‘ eérFa=p:P ‘ for equality of entailments (in Set).

® The computation rule for J is expressed using equality of entailments:

(J-comp)

[2:C.T] @+ J(h)[refl,] = h: P

where we used cut of dinaturals (with refl), which for J always works!

Example (Left unitality for composition)

(J-comp)

[z:C,c:C] g:hom(z,c)tF complrefl,, g] = g : hom(z, ¢)

Example (Terms send identities to identities)

— (J-comp)
[z : C] ® F maplrefl,] = F*(refl,) : hom(F'(z), F(z))
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Dependent directed J

e What if we want to prove unitality on the right, or associativity?
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Dependent directed J

e What if we want to prove unitality on the right, or associativity?
® There is a “dependent version of J" for equality of entailments:

[z: C,T] ®(z,%) F afrefl,] = Brefl,] : P(Z, 2)

— (J-eq)
[a:C°.b:C,T] e:home(a,b), ®(@,b) - ale] = Sle] : P(a,b)
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Dependent directed J

e What if we want to prove unitality on the right, or associativity?
® There is a “dependent version of J" for equality of entailments:

[z: C,T] ®(z,%) F afrefl,] = Brefl,] : P(Z, 2) (J-eq)
[a:C° b:C,T] e:homg(a,b), ®(a,b) - ale] = Ble] : P(a,b)

® |ntuition: two dinaturals o, B are equal everywhere if they agree on refl.
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Dependent directed J

e What if we want to prove unitality on the right, or associativity?
® There is a “dependent version of J" for equality of entailments:

[z: C,T] ®(z,%) F afrefl,] = Brefl,] : P(Z, 2)
[a:C° b:C,T] e:homg(a,b), ®(a,b) - ale] = Ble] : P(a,b)

® |ntuition: two dinaturals o, B are equal everywhere if they agree on refl.
® Semantics: crucially, using dinaturality!

(J-eq)

Example (Unitality on the right, associativity)

(J-comp)

[w: C] - refly ; refl, = refly, : hom(w, w)
(J-eq)

[a:C° z:C] f:hom(a,z)F f;refl, = f: hom(a, 2)
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Dependent directed J

e What if we want to prove unitality on the right, or associativity?
® There is a “dependent version of J" for equality of entailments:

[z: C,T] ®(z,%) F afrefl,] = Brefl,] : P(Z, 2)
[a:C° b:C,T] e:homg(a,b), ®(a,b) - ale] = Ble] : P(a,b)

® |ntuition: two dinaturals o, B are equal everywhere if they agree on refl.
® Semantics: crucially, using dinaturality!

(J-eq)

Example (Unitality on the right, associativity)

(J-comp)

[w: C] - refly ; refl, = refly, : hom(w, w)
(J-eq)

[a:C° z:C] f:hom(a,z)F f;refl, = f: hom(a, 2)

To prove associativity, simply contract f : hom(a, b):

[2,¢,d: C] g :hom(z, ¢), h : hom(c,d) b refl, ; (g5 k) = (refl, 5 g) 5 h : hom(z,d)
[a,b,c,d: C] f:hom(a,b),g: hom(b,c),h:hom(c,d) & f3(g3h) = (f;9);h:hom(a,d)
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Naturality for free

Example (Naturality of entailments)

Given a natural entailment o from P to @,

[z:Clp: P(x) Falp]: Qx)
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Naturality for free

Example (Naturality of entailments)

Given a natural entailment o from P to @,

[x:C]p: P(x)F alp] : Q(x)

we prove naturality, simply by contracting f : hom(a, b):

=-refl
2 C PO =
(J-comp)
[z:C] p: P(2) I transpg[refl, a[p]] = aftranspplrefl, p]] : Q(2) S
[a:C%®,b:C] f:hom(a,b),p: P(a)F transpg[f, a[p]] = aftranspp[f,p]] : Q(b) (J-eq) )
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Naturality for free

Example (Naturality of entailments)

Given a natural entailment o from P to @,

[x:C]p: P(x)F alp] : Q(x)

we prove naturality, simply by contracting f : hom(a, b):
(=-refl)

[2: C] p: P(2) Fafp] = afp] : Q)
[z:C] p: P(2) I transpg[refl, a[p]] = aftranspplrefl, p]] : Q(2)

[a: C%,b:C] f:hom(a,b),p: P(a) F transpg[f, alp]] = aftranspp(f, p]] : Q(b)

(J-comp)
(J-eq)

® This also works for dinaturality because transport is a natural.
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Naturality for free

Example (Natural transformations for terms)

Given a natural transformation o from F' to G,

[:C]-Fa:homp(F(z),G(x))

We prove naturality of families simply by contracting f : hom(a, b):
(=-refl)

[2:C] - F a=a:hom(F(z),G(z))

[2:C] - Freflpy s a = a;reflg,y - hom(F(Z), G(2))

[z:C] - - mapplrefl.] ; @ = o ; mapg|refl.] : hom(F(z), G(z))
[a:C%,b:C] f:hom(a,b) - mapp(f]; a = a3 mapg[f] : hom(F(a), G(b))

(J-comp)

(J-comp)
(J-eq)
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Naturality for free

Example (Natural transformations for terms)

Given a natural transformation o from F' to G,

[:C]-Fa:homp(F(z),G(x))

We prove naturality of families simply by contracting f : hom(a, b):
(=-refl)

[2:C] - F a=a:hom(F(z),G(z))

[2:C] - Freflpy s a = a;reflg,y - hom(F(Z), G(2))

[z:C] - - mapplrefl.] ; @ = o ; mapg|refl.] : hom(F(z), G(z))
[a:C%,b:C] f:hom(a,b) - mapp(f]; a = a3 mapg[f] : hom(F(a), G(b))

(J-comp)

(J-comp)
(J-eq)

® We can internalize all these transformations using ends:
[]-F a:Nat(F,G):= / homp (F(z), G(x))
:C
[]-F «: Nat(P, Q)::f P(T) = Q(x)
C

xX:
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Directed type theory: logical rules

® | ogical rules are given as isomorphisms in "adjoint form":
oFPxQ
] &+ P, ok

(prod)
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Directed type theory: logical rules

® Logical rules are given as isomorphisms in "adjoint form":
oFPxQ
] &+ P, ok

(prod)

® Dinaturals can be curried: intuitively, all positions invert polarity:
[:T] A(Z,z), ®(T,z) F B(T, )
[ : T o(z,z) - A(x,T) = B(T,x)

(exp)
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Directed type theory: logical rules

® | ogical rules are given as isomorphisms in "adjoint form":
oFPxQ
] &+ P, ok

(prod)

® Dinaturals can be curried: intuitively, all positions invert polarity:

[:T] A(Z,z), ®(z,z) F B(z,x)

(exp)
[ : T o(z,z) - A(x,T) = B(T,x) P
® Rules for (co)ends in "adjoint” form:
[a:C,T] @+ Q(a,a) 1] (/%9 Q(@,a)), ® - P
— (end) (coend)
I @+ [,.cQ@ a) [a:C,T] Q@a),®F P

® This is the presentation V/3-as-adjoints, up to composition of dinaturals.
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Semantics of directed J

® This semantic result is where the restrictions of .J come from:
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Semantics of directed J

® This semantic result is where the restrictions of .J come from:

There is a bijection (natural in P,Q : C°? x C — Set)
between sets of dinaturals and sets of naturals like this:

P—=Q

hom(a,b) — P°P(b,a) = Q(a,b)
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Semantics of directed J

® This semantic result is where the restrictions of .J come from:

There is a bijection (natural in P,Q : C°? x C — Set)
between sets of dinaturals and sets of naturals like this:

P—==Q

hom(a,b) — P°P(b,a) = Q(a,b)

Proof. precisely by Yoneda: pick the identities, use (di)naturality.
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Semantics of directed J

® This semantic result is where the restrictions of .J come from:

There is a bijection (natural in P,Q : C°? x C — Set)
between sets of dinaturals and sets of naturals like this:

P—==Q

hom(a,b) — P°P(b,a) = Q(a,b)

Proof. precisely by Yoneda: pick the identities, use (di)naturality.

® This is where J comes from:
[z:C,T] O(z,2) - P(z,2)

[a: C°P,b: C,T| home(a,b) - ®(b,a) = P(a,b) (exp) (J)
exp

]

[a:C° b:C,T] homg(a,b),®(b,a)+ P(a,b)
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Semantics of directed J

® This semantic result is where the restrictions of .J come from:

There is a bijection (natural in P,Q : C°? x C — Set)
between sets of dinaturals and sets of naturals like this:

P—==Q

hom(a,b) — P°P(b,a) = Q(a,b)

Proof. precisely by Yoneda: pick the identities, use (di)naturality.

® This is where J comes from:
[z:C T ®(z,2) F

[a:C°P b: C,T'] homg(a,b) F
a) k-

e Syntax: all rules for hom are derivable

/\
]

,2)

®(b,a) = P J
)= Ple )(EXP) )

/'\

[a:C° b:C,T] home(a,b), ®(b,

@‘
—~

P(a,b

)
(J) is an iso is derivable.
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(Co)end calculus

® Using our rules we can prove category theory theorems “logically”.
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(Co)end calculus

® Using our rules we can prove category theory theorems “logically”.

e We use (co)end calculus-style reasoning, i.e., we show that two
presheaves are isomorphic using Yoneda.
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(Co)end calculus

® Using our rules we can prove category theory theorems “logically”.

e We use (co)end calculus-style reasoning, i.e., we show that two
presheaves are isomorphic using Yoneda.

e Adjoint form is better suited to (co)end calculus style reasoning:
term-based reasoning is hard because of dinaturality.
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(Co)end calculus

® Using our rules we can prove category theory theorems “logically”.

We use (co)end calculus-style reasoning, i.e., we show that two
presheaves are isomorphic using Yoneda.

Adjoint form is better suited to (co)end calculus style reasoning:
term-based reasoning is hard because of dinaturality.

Rules for (co)ends as quantifiers + directed equality:

® (Co)Yoneda,

® Adjointess of Kan extensions via (co)ends,
Presheaves are closed under exponentials,
Associativity of composition of profunctors,

Right lifts in profunctors,

(Co)ends preserve limits,

Adjointness of (co)ends in natural transformations,
Characterization of dinaturals as certain ends,
Frobenius property of (co)ends using exponentials.
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(Co)end calculus with dinaturality (1)

Yoneda lemma: ([P],[I'] : [C] — Set)
la:C) I'a) - / _home(a,7) = P(2)

x:

(end)

[a:C,z:C] I'(a)F home(a,z) = P(x)
[a:C,z:C] home(a,x) x I'(a) - P(x)
[z:C] I'(z) F P(2)

(exp)

hom)
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(Co)end calculus with dinaturality (1)

Yoneda lemma: ([P],[I'] : [C] — Set)
M:C]FWN—/Chmmﬂmf)#J%@

x:

(end)

[a:C,z:C] I'(a)F home(a,z) = P(x)
[a:C,z:C] home(a,x) x I'(a) - P(x)
[z:C] I'(z) F P(2)

(exp)

hom)

CoYoneda lemma: -
[mcy/'mmda@xmﬂkr@

(coend)

[a:C,x:C] home(a,z) x Pla) F I'(z)
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(Co)end calculus with dinaturality (2)

Presheaves are cartesian closed: ([I'], [A],[B] : [C] — Set)

[z:C| I'(z) F (A= B)(x)
:= Nat(home(z, —) x A, B)

=~ /y:c home(z,7) x A(y) = B(y)

(end)

[:C,y:C] I'(z) Fhome(z,7) x A(Y) = B(y)
[:C,y:C] A(y) x home(Z,y) x I'(z) - B(y)

(exp)

(coend)

z:C
v+ C] A) x ( | home(@y) x rm) - B

(coYoneda)

ly:C] Aly) x I'(y) = B(y)
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(Co)end calculus with dinaturality (3)

Right Kan extensions via ends are right adjoints to precomposition with
F:C—D(P:C—Set,I': D — Set):

ly: D] I'(y) - (RanpP)(y)
— /x _homp(y, F(@) = P(a)

end
[:C,y: D] I'(y) Fhomp(y, F(Z)) = P(x) (exp)( )
[z :C,y: D] homp(y, F(z)) x I'(y) + P(x) (coend)
e : C] / Y homp(3. F(x)) x [(y) - P(x)
(coYoneda)

[:C| I'(F(z)) F P(x)
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(Co)end calculus with dinaturality (5)

Fubini for ends (1" : [] prop, P : [C, D] prop)

(end)

(end)

[z:Cyy: D] '+ P(z,2,7,y)
ly:D,xz:C| '+ P(T

(structural property)
(end)

ly:D I’F(/‘ (T, 2,7,y)

nref | pEey)

(end)
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Conclusion and future work

We have seen how dinaturality allows us to give a semantic interpretation
to a first-order directed type theory in Cat with quantifiers, where directed
equality is given by hom-functors and quantifiers by (co)ends.
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Conclusion and future work

We have seen how dinaturality allows us to give a semantic interpretation
to a first-order directed type theory in Cat with quantifiers, where directed
equality is given by hom-functors and quantifiers by (co)ends.

Future work:

@ Big piece missing from the story: compositionality of dinaturals.
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» Claim: non-compositionality is intrinsic to Cat, like failure of UIP.

Andrea Laretto Directed equality with dinaturality TYPES 2025 19/19



Conclusion and future work

We have seen how dinaturality allows us to give a semantic interpretation
to a first-order directed type theory in Cat with quantifiers, where directed
equality is given by hom-functors and quantifiers by (co)ends.

Future work:

@ Big piece missing from the story: compositionality of dinaturals.
» Claim: non-compositionality is intrinsic to Cat, like failure of UIP.
» Find suitable structures axiomatizing composition of dinaturality
(e.g., operads/multicategories but with explicit variances of variables.).

Andrea Laretto Directed equality with dinaturality TYPES 2025 19/19



Conclusion and future work

We have seen how dinaturality allows us to give a semantic interpretation
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@ Big piece missing from the story: compositionality of dinaturals.
» Claim: non-compositionality is intrinsic to Cat, like failure of UIP.
» Find suitable structures axiomatizing composition of dinaturality
(e.g., operads/multicategories but with explicit variances of variables.).

® Long-term future: now that types are categories,
» Internalize semantics of type theory inside type theory (e.g., dQIIT).
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» Claim: non-compositionality is intrinsic to Cat, like failure of UIP.
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(e.g., operads/multicategories but with explicit variances of variables.).

® Long-term future: now that types are categories,
» Internalize semantics of type theory inside type theory (e.g., dQIIT).
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Conclusion and future work

We have seen how dinaturality allows us to give a semantic interpretation
to a first-order directed type theory in Cat with quantifiers, where directed
equality is given by hom-functors and quantifiers by (co)ends.

Future work:

@ Big piece missing from the story: compositionality of dinaturals.
» Claim: non-compositionality is intrinsic to Cat, like failure of UIP.
» Find suitable structures axiomatizing composition of dinaturality
(e.g., operads/multicategories but with explicit variances of variables.).

® Long-term future: now that types are categories,
» Internalize semantics of type theory inside type theory (e.g., dQIIT).
» Revisit category-theoretic concepts logically.

© Immediate future: a working notion of dinatural context extension
~> towards dependent dinatural directed type theory.
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The /

Paper: “Directed equality with dinaturality” (arXiv:2409.10237)
Website: iwilare.com (+— updated version is here!)

Thank you for the attention!
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