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Introduction

Impredicativity 101

According to the O.E.D:

im- + predicative, adj. & n.: With a sneaky form of circularity

~1389, Chaucer: Can't trust this dude, he’s too impredicative!
The origin of the notion of types, from Russell:

Let .S be the set of all sets that do not contain themselves:

Does S contain itself?

Fix: introduce a stratification to prevent such self-applications

Anti-fix: some forms of impredicativity seem consistent and useful
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Introduction

Why do I care?

Working on Typer, an ML/Haskell with dependent types and macros
Typer: low-level A-calculus intermediate language
Impredicativity used in:

e Encoding of modules into tuples
(containing level-polymorphic definitions)

e Closure conversion
e The desire to subsume System F

Existing forms of impredicativity don’t seem sufficient

Not fond of a special Prop universe (and didn’t know about PR)
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Introduction

Forms of impredicativity

Impredicative universes: To :Prop = (x:71) — T2 :Prop

As present in System F, Coq, Lean, and many others.

Resizing axioms: T:Type, N P(T) = 7 :Type,
Most famously, HoTT’s propositional resizing.

Unsound: Type : Type
Clearly not ideal, especially with erasure.

New, IUP: [',[:Level = 7 : Type,
The present suggestion ' (l:Level) — 7 Type,[0/1]
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Voices in my head:

Bounds:
e Strong sums defeat stratification.
e Encode System F

Encouraging signs

e Girard’'s Paradox did not bite (yet?).
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e Encoding inductive types as closures.

e Encoding closures as inductive types.

Introduction

Plan
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Introduction

Encoding inductive types as closures

Church-style encoding of lists:
Listt = (t:Type) >t — (T =t —t) >t

e No induction principle, hence no reasoning.
Solutions by Awodey et.al. [2018] and Firsov and Stump [2018].

e No strong elimination.

Limited solution by Jenkins et.al. [2021]

Strong elimination via universe polymorphism:

Listt = (l:Level) = (t:Type;) >t — (T =t —t) =t
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Introduction

Universe of encoded inductive types

(t:Type;) =t = (T —=t—=1) =t : Type, g1
(I :Level) = (t:Type;) =t = (T =t —=t) =1t : Types,

Predicative principles stipulate sup; (u LI S'[):

(I : Level) — (t:Type;) — ... : Type,

Yet! The type is isomorphic to the inductive: ListT : Type,
IUP uses inf; (u LI S 1):

(0 : Level) — (t:Type;) — ... & Typer, 1)
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Introduction

Encoding closures as inductive types

Closure conversion turns (open) functions into pairs of:
captured environment X closed function

An.n+1:Int — Int | An.n + length Float temps : Int — Int
— —
((), A(env,n).n+ 1) | ((length, Float, temps),

A(env,n).n + env.1 env.2 env.3)

Hide the type of env to preserve types:
Int — Int = Jt.(¢t x ((¢ X Int) — Int))

Works great in System F! (after erasing Float)
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Closure conversion with universes

With universes this turns into: ~ 3(¢:Type,,).(t X ((t X Int) — Int))

And we need to hide u which depends on the captured environment:

(1 :Level).3(t: Type;).(t X ((t X Int) = Int))

Predicative principles stipulate sup; ((S' /) LI 0):
(1 : Level).3(t:Type;). ... : Type,

Yet! The type is equivalent to the arrow type: Int — Int : Typeg
IUP uses inf; ((S'[) LI 0):
(1 : Level).3(:Type;). ... : Type,
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Strong sums

[',[:Level - 7 : Type,

Let’s try IUP with strong sums:
' X7 Typeu[O/l]

We can define:
lower (1:Level) (t:Type;) (x:t) = (I, (¢, x))

raise (b:X1.3t: Type;.t) = b.2.2

This gives us:
loweru T x : Xl.23t:Type;.t : Typey

Va:7:Type,. raise (loweru T x)~ x

We can smuggle any value in a box that lives in Type;!

Suggests that IUP is incompatible with first-class universe levels.
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System F

IUP is as strong as System F:

Vt.1]| = (I:Level) — (t:Type;) — [7]
[At.e] = A\(I:Level). \(t:Type;).[e]
lel7]] = [e] w [7]

We can just compute u from [ 7]

Stefan Monnier ™ Resizing Prop ™ 11/17

€» DIRO



Introduction

Well ordering

Common example of inconsistency in impredicative systems:
Ordering : Type = X.(set : Type,, ).

Y.(less-than : set — set — Type).

The inconsistency appears when we define an ordering of orderings.

In a predicative setting this does not work because Ordering ends up in
a universe level higher than wu.

If we want to try and reproduce the paradox using IUP, we need to
abstract over the universe level of set.
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Well ordering via existential quantification

First attempt:
Ordering1 : Type; = (I : Level).
Y. (set : Type;).

Y.(less-than : set — set — Type).

We can now instantiate set to this type.

But the weak nature of the existential makes Ordering1 unusable:
We cannot eliminate to anything that depends on [, so ...
We cannot eliminate to anything that depends on sef, so ...
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Introduction

Well ordering via universal quantification

Second attempt:
Ordering2 : Type; = (I : Level) —
Y. (set : Type;).

Y.(less-than : set — set — Type).

Again, we can now instantiate set to this type (when [ is 1).

¢, Write a function which instantiates set to Ordering2 when [ is 1 yet to
something in Typey when [ is 07?

Use set : Typeg ; to avoid the Type, case? Pushes Ordering2 to Type,!
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Conclusion

Church-encoding suggests: (l : Level) — T . Typeu[o/l]

Closure conversion suggests: (1 : Level).T : Type.,[0 /1]
Better stop before (1 : Level).T : Type,[0/1)!

IUP is as strong as System F.

We have failed to encode known paradoxes so far.

We have used only ([ :Level) — (¢:Type;) — ... so far

Help!
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