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Abstract 
This paper presents a denotational model of inheritance. 
The model is based on an intuitive motivation of the 
purpose of inheritance. The correctness of the model is 
demonstrated by proving it equivalent to an operational 
semantics of inheritance based upon the method-lookup 
algorithm of object-oriented languages. Although it was 
originally developed to explain inheritance in object- 
oriented languages, the model shows that inheritance is 
a general mechanism that may be applied to any form 
of recursive definition. 

1 Introduction 
Inheritance is one of the central concepts in object- 
oriented programming. Despite its importance, there 
seems to be a lack of consensus on the proper way to 
describe inheritance. This is evident from the following 
review of various formalizations of inheritance that have 
been proposed. 

The concept of prefizing in Simula [5], which evolved 
into the modern concept of inheritance, was defined in 
terms of textual concatenation of program blocks. How- 
ever, this definition was informal, and only partially ac- 
counted for more sophisticated aspects of prefixing like 
the pseudo-variable this and virtual operations. 

The most precise and widely used definition of inher- 
itance is given by the operational semantics of object- 
oriented languages. The canonical operational seman- 
tics is the “method lookup” algorithm of Smalltalk: 
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When a message is sent, the methods in 
the receiver’s class are searched for one with a 
matching selector. If none is found, the meth- 
ods in that class’s superclass are searched next. 
The search continues up the superclass chain 
until a matching method is found. . . . 

When a method contains a message whose 
receiver is self, the search for the method for 
that message begins in the instance’s class, re- 
gardless of which class contains the method 
containing self. . . . 

When a message is sent to super, the search 
for a method . . . begins in the superclass of the 
class containing the method. The use of super 
allows a method to access methods defined in a 
superclass even if the methods have been over- 
ridden in the subclasses. [6, pp. 61-641 

Unfortunately, such operational definitions do not nec- 
essarily foster intuitive understanding. As a result, in- 
sight into the proper use and purpose of inheritance is 
often gained only through an “Aha!” experience [I]. 

Cardelli [2] identifies inheritance with the subtype re- 
lation on record types: “a record type T is a subtype 
(written 5) of a record type r’ if 7 has all the fields of T’, 
and possibly more, and the common fields of 7 and r’ are 
in the 5 relation.” His work shows that a sound type- 
checking algorithm exists for strongly-typed, statically- 
scoped languages with inheritance, but it doesn’t give 
their dynamic semantics. More recently, McAllister and 
Zabih [9] suggested a system of “boolean classes” simi- 
lar to inheritance as used in knowledge representation. 
Stein [16] focused on shared attributes and methods. 
Minsky and Rozenshtein [lo] characterized inheritance 
by “laws” regulating message sending. Although they 
express various aspects of inheritance, none of these pre- 
sentations are convincing because they provide no ver- 
ifiable evidence that the formal model corresponds to 
the form of inheritance actually used in object-oriented 
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Types of denotations are (Scott-)domains 

‣ pointed cpos (e.g, 𝜔-complete, directed-complete, continuous lattices)


‣ recursively defined – without guards, up to isomorphism

Denotations are defined in typed λ-notation 

‣ functions on domains are continuous maps


‣ endofunctions on domains have least fixed points
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Some formalizations: 

‣ Bernhard Reus (1994): using Extended Calculus of Constructions, in Lego


‣ Tom de Jong (2021): using Univalent Type Theory (TypeTopology), in Agda
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Semantic Equations
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[D1 ! D1]

[[�]] 2 exp ! [(var ! D1)! D1]

[[v]] ⌘ = ⌘ v

[[�v. e]] ⌘ =  (�x 2 D1. [[e]][⌘ | v : x])

[[e e0]] ⌘ = � ([[e]] ⌘) ([[e0]] ⌘)

We have to prove that all terms in this definition are in the required domains:

�x 2 D1. [[e]][⌘ | v : x] is a continuous function from D1 to D1

the so-defined [[�]] is a continuous function from Env to D1.

 Copied from www.cs.yale.edu/homes/hudak/CS430F07/LectureSlides/Reynolds-ch10.pdf
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TypeTopology.All

June 7, 2025

Peter Mosses, May 2025 Incomplete

Formalization of the untyped 𝐿-calculus and its interpretation in Scott’s D→. See DomainThe-
ory.Bilimits.Dinfinity for the construction of D→.

{-# OPTIONS --without-K --lossy-unification --allow-unsolved-metas #-}

open import MLTT.Spartan

open import UF.FunExt

open import UF.PropTrunc

open import UF.Subsingletons

module DomainTheory.Bilimits.LambdaCalculus

(pt : propositional-truncations-exist)

(fe : Fun-Ext)

(pe : Prop-Ext)

where

open PropositionalTruncation pt

open import UF.Base

open import UF.Subsingletons-Properties

open import DomainTheory.Basics.Dcpo pt fe U0
open import DomainTheory.Basics.Exponential pt fe U0
open import DomainTheory.Basics.Miscelanea pt fe U0
open import DomainTheory.Basics.Pointed pt fe U0
open import DomainTheory.Bilimits.Sequential pt fe U1 U1
open import DomainTheory.Lifting.LiftingSet pt fe U0 pe

open import Naturals.Order hiding (subtraction’)

open import Naturals.Addition renaming (_+_ to _+’_)

open import Notation.Order

open import DomainTheory.Bilimits.Dinfinity pt fe pe hiding (𝑀)

We have the non-trivial domain D→ and isomorphism D→ ↑dcpo (D→ =↓dcpo D→).

Below, we define the function abs from continuous endofunctions on D→ to D→. The function app
composes the inverse of abs with extracting the underlying function fron a continuous function.

1
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abs : 〈 D→ =↑dcpo D→ 〉 → 〈 D→ 〉

abs = [ D→ =↑dcpo D→ , D→ ]〈 𝐿-exp→’ 〉

app : 〈 D→ 〉 → 〈 D→ 〉 → 〈 D→ 〉

app = underlying-function D→ D→ ↓ [ D→ , D→ =↑dcpo D→ ]〈 𝑀-exp→’ 〉

We define an abstract syntax for terms of the 𝑁-calculus, parametrized by the abstract syntax of
variables with a Bool-valued equality test.

The terms of the 𝑁-calculus include free variables, so their abstract syntax is not well-scoped.

open import MLTT.Bool using (Bool; if_then_else_)

module Terms

(Var : U0
.
)

(_==_ : Var → Var → Bool)

where

data Exp : U0
.
where

var_ : Var → Exp

!_·_ : Var → Exp → Exp

_·_ : Exp → Exp → Exp

variable e : Exp

As usual in conventional Scott–Strachey style denotational semantics, bindings are modeled by
environments 𝑂 : Env that map variables v : Var to elements of semantic domains, and 𝑂 [ x / v ]
extends 𝑂 to map v to x.

We define Env simply as a function type, as we do not need it to be a domain.

Env = Var → 〈 D→ 〉

variable 𝑂 : Env

_[_/_] : Env → 〈 D→ 〉 → Var → Env

𝑂 [ x / v ] = 𝑁 v
↔
→ if v == v

↔
then x else 𝑂 v

↔

The denotation ↗ e ↘ of a term e is an element of the type Env → 〈 D→ 〉.

↗_↘ : Exp → Env → 〈 D→ 〉

!-is-continuous : ≃ e 𝑂 v → is-continuous D→ D→ (𝑁 x → ↗ e ↘ (𝑂 [ x / v ]))

↗ var v ↘ 𝑂 = 𝑂 v

↗ ! v · e ↘ 𝑂 = abs ( (𝑁 x → ↗ e ↘ (𝑂 [ x / v ])) , !-is-continuous e 𝑂 v )

↗ e1 · e2 ↘ 𝑂 = app ( ↗ e1 ↘ 𝑂 ) ( ↗ e2 ↘ 𝑂 )

!-is-continuous e 𝑂 v = {! !}

The definition of !-is-continuous e 𝑂 v appears to require lifting lubs of directed families through
the denotation of term e, and could be lengthy...
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a continuous function is a pair:

 – an underlying function and 

 – a proof of its continuity
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variables with a Bool-valued equality test.

The terms of the 𝑁-calculus include free variables, so their abstract syntax is not well-scoped.

open import MLTT.Bool using (Bool; if_then_else_)

module Terms

(Var : U0
.
)

(_==_ : Var → Var → Bool)

where

data Exp : U0
.
where

var_ : Var → Exp

!_·_ : Var → Exp → Exp

_·_ : Exp → Exp → Exp

variable e : Exp

As usual in conventional Scott–Strachey style denotational semantics, bindings are modeled by
environments 𝑂 : Env that map variables v : Var to elements of semantic domains, and 𝑂 [ x / v ]
extends 𝑂 to map v to x.

We define Env simply as a function type, as we do not need it to be a domain.

Env = Var → 〈 D→ 〉

variable 𝑂 : Env

_[_/_] : Env → 〈 D→ 〉 → Var → Env

𝑂 [ x / v ] = 𝑁 v
↔
→ if v == v

↔
then x else 𝑂 v

↔

The denotation ↗ e ↘ of a term e is an element of the type Env → 〈 D→ 〉.

↗_↘ : Exp → Env → 〈 D→ 〉

!-is-continuous : ≃ e 𝑂 v → is-continuous D→ D→ (𝑁 x → ↗ e ↘ (𝑂 [ x / v ]))

↗ var v ↘ 𝑂 = 𝑂 v

↗ ! v · e ↘ 𝑂 = abs ( (𝑁 x → ↗ e ↘ (𝑂 [ x / v ])) , !-is-continuous e 𝑂 v )

↗ e1 · e2 ↘ 𝑂 = app ( ↗ e1 ↘ 𝑂 ) ( ↗ e2 ↘ 𝑂 )

!-is-continuous e 𝑂 v = {! !}

The definition of !-is-continuous e 𝑂 v appears to require lifting lubs of directed families through
the denotation of term e, and could be lengthy...
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 – modules

Abstract syntax grammar 

‣ inductive datatype definitions


'Domain' definitions 
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Semantic functions 

‣ functions defined inductively in λ-notation
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Formalization of Denotational Semantics Peter Mosses

Agda formalization of synthetic domain theory. Instead of formalizing the standard
set-theoretic definitions of domains and continuous functions, synthetic domain theory (SDT)
axiomatizes domains as kinds of sets in intuitionistic set-theory. Endofunctions on such sets
have fixed points, and recursive set equations have solutions. SDT was suggested by Dana Scott
[23], about 10 years after his initial development of domain theory.

Most of the published theoretical work on SDT [3, 7, 12, 13, 16, 18, 24, 25, 28] concentrated
mainly on sorting out the underlying mathematical framework of what properties domains have,
and on studying models of such domains. However, Bernhard Reus [14] also formalized SDT in
the Lego proof assistant. The formalization relies on impredicativity and proof-irrelevance [15],
which prevents porting it straightforwardly to Agda.

Alex Simpson’s development of SDT [24] is based on intuitionistic ZF set theory. The
generality of the approach is illustrated by a denotational semantics of FPC, a recursively-
typed ω-calculus with sum and product types. In op. cit. (§3) he wrote: “it seems likely that,
with appropriate reformulations, the development of this paper could be carried out in the
(predicative) context of Martin-Löf’s Type Theory”, but apparently its formalization in Agda
has not yet been attempted.

It appears that the only formalizations of SDT so far developed in Agda are based on guarded
domain definitions in clocked cubical type theory [4, 6, 26]. However, denotations then involve
step-indexing, so they are generally more intensional than in conventional Scott domain theory.

Lightweight Agda formalization. The Agda code presented below is a lightweight formal-
ization of a standard denotational semantics of the untyped call-by-name ω-calculus, following
[17, §10.5]. The complete source code is available online [11].

Abstract syntax. Denotational semantics conventionally defines the abstract syntax of a
language by a context-free grammar. Agda doesn’t include grammars, but it is quite straight-
forward to transform a grammar to inductive datatype definitions with the same interpretation.
The following datatype uses ordinary functional notation for term constructors (partly because
Agda’s mixfix notation doesn’t allow the usual terminal symbols of the ω-calculus) but it is
otherwise a reasonably direct formalization of the original definition.

data Var : Set where
x : N → Var -- variables

_==_ : Var → Var → Bool
x n == x n→ = (n →b n→)

data Exp : Set where
var_ : Var → Exp -- variable value

lam : Var → Exp → Exp -- lambda abstraction

app : Exp → Exp → Exp -- application

Domains. The standard denotational semantics of the ω-calculus is based on a domain
D↑ isomorphic to the domain of all continuous functions from D↑ to D↑.1 Its lightweight
formalization postulates2 the existence of an Agda type D↑ with a bijection _↑_ to the type
D↑ → D↑ of all Agda functions on D↑.

open import Function
using (Inverse; _↑_) public

open Inverse {{ ... }}
using (to; from) public

postulate
D↑ : Set

postulate
instance iso : D↑ ↑ (D↑ → D↑)

1In fact the least solution of the domain equation D→ = D→ → D→ is a 1-element domain; the intended
solution includes some arbitrary non-trivial domain.

2Assumptions are specified as postulates to avoid module parameters that would need to be repeated in
importing modules, and to allow assumed properties to be added as rewrite rules.
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module ULC.Domains where

open import Function

using (Inverse; _→_) public

open Inverse {{ ... }}

using (to; from) public

postulate

D↑ : Set

postulate

instance iso : D↑ → (D↑ → D↑)

variable d : D↑

module ULC.Environments where

open import ULC.Variables

open import ULC.Domains

open import Data.Bool using (if_then_else_)

Env = Var → D↑

variable 𝐿 : Env

_[_/_] : Env → D↑ → Var → Env

𝐿 [ d / v ] = 𝑀 v
↓
→ if v == v

↓
then d else 𝐿 v

↓

module ULC.Semantics where

open import ULC.Variables

open import ULC.Terms

open import ULC.Domains

open import ULC.Environments

↔_↗ : Exp → Env → D↑
-- ↔ e ↗ 𝐿 is the value of e with 𝐿 giving the values of free variables

↔ var v ↗ 𝐿 = 𝐿 v

↔ lam v e ↗ 𝐿 = from ( 𝑀 d → ↔ e ↗ (𝐿 [ d / v ]) )

↔ app e1 e2 ↗ 𝐿 = to ( ↔ e1 ↗ 𝐿 ) ( ↔ e2 ↗ 𝐿 )

2

Lightweight Agda formalization
– a 'domain'
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generality of the approach is illustrated by a denotational semantics of FPC, a recursively-
typed ω-calculus with sum and product types. In op. cit. (§3) he wrote: “it seems likely that,
with appropriate reformulations, the development of this paper could be carried out in the
(predicative) context of Martin-Löf’s Type Theory”, but apparently its formalization in Agda
has not yet been attempted.

It appears that the only formalizations of SDT so far developed in Agda are based on guarded
domain definitions in clocked cubical type theory [4, 6, 26]. However, denotations then involve
step-indexing, so they are generally more intensional than in conventional Scott domain theory.

Lightweight Agda formalization. The Agda code presented below is a lightweight formal-
ization of a standard denotational semantics of the untyped call-by-name ω-calculus, following
[17, §10.5]. The complete source code is available online [11].

Abstract syntax. Denotational semantics conventionally defines the abstract syntax of a
language by a context-free grammar. Agda doesn’t include grammars, but it is quite straight-
forward to transform a grammar to inductive datatype definitions with the same interpretation.
The following datatype uses ordinary functional notation for term constructors (partly because
Agda’s mixfix notation doesn’t allow the usual terminal symbols of the ω-calculus) but it is
otherwise a reasonably direct formalization of the original definition.

data Var : Set where
x : N → Var -- variables

_==_ : Var → Var → Bool
x n == x n→ = (n →b n→)

data Exp : Set where
var_ : Var → Exp -- variable value

lam : Var → Exp → Exp -- lambda abstraction

app : Exp → Exp → Exp -- application

Domains. The standard denotational semantics of the ω-calculus is based on a domain
D↑ isomorphic to the domain of all continuous functions from D↑ to D↑.1 Its lightweight
formalization postulates2 the existence of an Agda type D↑ with a bijection _↑_ to the type
D↑ → D↑ of all Agda functions on D↑.

open import Function
using (Inverse; _↑_) public

open Inverse {{ ... }}
using (to; from) public

postulate
D↑ : Set

postulate
instance iso : D↑ ↑ (D↑ → D↑)

1In fact the least solution of the domain equation D→ = D→ → D→ is a 1-element domain; the intended
solution includes some arbitrary non-trivial domain.

2Assumptions are specified as postulates to avoid module parameters that would need to be repeated in
importing modules, and to allow assumed properties to be added as rewrite rules.

2

module ULC.Domains where

open import Function

using (Inverse; _→_) public

open Inverse {{ ... }}

using (to; from) public

postulate

D↑ : Set

postulate

instance iso : D↑ → (D↑ → D↑)

variable d : D↑

module ULC.Environments where

open import ULC.Variables

open import ULC.Domains

open import Data.Bool using (if_then_else_)

Env = Var → D↑

variable 𝐿 : Env

_[_/_] : Env → D↑ → Var → Env

𝐿 [ d / v ] = 𝑀 v
↓
→ if v == v

↓
then d else 𝐿 v

↓

module ULC.Semantics where

open import ULC.Variables

open import ULC.Terms

open import ULC.Domains

open import ULC.Environments

↔_↗ : Exp → Env → D↑
-- ↔ e ↗ 𝐿 is the value of e with 𝐿 giving the values of free variables

↔ var v ↗ 𝐿 = 𝐿 v

↔ lam v e ↗ 𝐿 = from ( 𝑀 d → ↔ e ↗ (𝐿 [ d / v ]) )

↔ app e1 e2 ↗ 𝐿 = to ( ↔ e1 ↗ 𝐿 ) ( ↔ e2 ↗ 𝐿 )

2

Lightweight Agda formalization
– a 'domain'
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Formalization of Denotational Semantics Peter Mosses

The special module application Inverse {{ ... }} above has the e!ect of declaring the functions
to : D→ → (D→ → D→) and from : (D→ → D→) → D→ to be inverse.

Domain equations in the denotational semantics of other languages generally involve also
some flat domains, and domain constructors for cartesian product and separated sum. Their
lightweight formalizations import standard Agda library modules for the corresponding datatypes
and type constructors, and postulate groups of types with bijections to Agda type terms, as
illustrated for PCF and Scheme in [11].

Environments are functions from the abstract syntax of variables to values in the domain
D→. Ordering them pointwise defines a domain of environments. The lightweight formalization
of this non-recursive domain in Agda is a simple type definition, together with the definition of
the conventional notation for extending an environment with a single binding:

Env = Var → D→ _[_/_] : Env → D→ → Var → Env
ω [ d / v ] = ε v↑ → if v == v↑ then d else ω v↑

Semantic functions. A conventional denotational semantics declares semantic functions from
abstract syntax to domains of denotations, and defines the functions compositionally by semantic
equations. Agda formalization of semantic functions is straightforward, as semantic equations
can be written directly in Agda, and the type-checker reports any missing or overlapping cases.
Some minor lexical adjustments to ε-notation are needed: εx.fx becomes ε x → f x, adjacent
names have to be separated by spaces, and sub- and superscript terms are not supported.

!_" : Exp → Env → D→
! var v " ω = ω v

! lam v e " ω = from ( ε d → ! e " (ω [ d / v ]) )
! app e1 e2 " ω = to ( ! e1 " ω ) ( ! e2 " ω )

Conventional denotational definitions usually elide the isomorphisms between domains and their
definitions, but Agda requires explicit use of to and from in the formalization (cf. [17, §10.5]).
The type-checker reports where elided isomorphisms need to be inserted.

Checking computed values. The following rewrite rule allows Agda to automatically
evaluate the denotations of terms in the untyped ε-calculus, thereby supporting trivial proofs of
equivalence. (Caveat: The proofs could be unsound, as the rewrite rule involves postulates.)

open Inverse using (inversel)
to-from-elim : → {f} → to (from f) ↑ f

check-convergence :
! app (lam (x 1) (var x 42))

(app (lam (x 0) (app (var x 0) (var x 0)))
(lam (x 0) (app (var x 0) (var x 0)))) "

↑ ! var x 42 "
check-convergence = refl

to-from-elim = inversel iso refl
{-# REWRITE to-from-elim #-}

check-free :
! app (lam (x 1)

(app (lam (x 42) (var x 1))
(var x 2)))

(var x 42) " ↑ ! var x 42 "
check-free = refl

The denotational semantics of PCF involves explicit use of the fixed-point function fix. Its
lightweight Agda formalization postulates fix f ↑ f (fix f). To use that property directly as a
rewrite rule would lead to non-termination; however, the following derived property can be used,
as it unfolds fix f only when f needs to be applied (as in SIS [8]): fix f p ↑ f (fix f) p.

Future work. It is clearly an abuse of Agda to type-check definitions based on potentially-
unsound postulates. An implementation of some framework for (unguarded) SDT in Agda would
presumably require a significant e!ort, but might contribute to increased interest in SDT, as
well as providing proper foundations for lightweight formalization of denotational semantics.
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The denotational semantics of PCF involves explicit use of the fixed-point function fix. Its
lightweight Agda formalization postulates fix f ↑ f (fix f). To use that property directly as a
rewrite rule would lead to non-termination; however, the following derived property can be used,
as it unfolds fix f only when f needs to be applied (as in SIS [8]): fix f p ↑ f (fix f) p.

Future work. It is clearly an abuse of Agda to type-check definitions based on potentially-
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presumably require a significant e!ort, but might contribute to increased interest in SDT, as
well as providing proper foundations for lightweight formalization of denotational semantics.
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module ULC.Domains where

open import Function

using (Inverse; _→_) public

open Inverse {{ ... }}

using (to; from) public

postulate

D↑ : Set

postulate

instance iso : D↑ → (D↑ → D↑)

variable d : D↑

module ULC.Environments where

open import ULC.Variables

open import ULC.Domains

open import Data.Bool using (if_then_else_)

Env = Var → D↑

variable 𝐿 : Env

_[_/_] : Env → D↑ → Var → Env

𝐿 [ d / v ] = 𝑀 v
↓
→ if v == v

↓
then d else 𝐿 v

↓

module ULC.Semantics where

open import ULC.Variables

open import ULC.Terms

open import ULC.Domains

open import ULC.Environments

↔_↗ : Exp → Env → D↑
-- ↔ e ↗ 𝐿 is the value of e with 𝐿 giving the values of free variables

↔ var v ↗ 𝐿 = 𝐿 v

↔ lam v e ↗ 𝐿 = from ( 𝑀 d → ↔ e ↗ (𝐿 [ d / v ]) )

↔ app e1 e2 ↗ 𝐿 = to ( ↔ e1 ↗ 𝐿 ) ( ↔ e2 ↗ 𝐿 )
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Formalization of Denotational Semantics Peter Mosses

The special module application Inverse {{ ... }} above has the e!ect of declaring the functions
to : D→ → (D→ → D→) and from : (D→ → D→) → D→ to be inverse.

Domain equations in the denotational semantics of other languages generally involve also
some flat domains, and domain constructors for cartesian product and separated sum. Their
lightweight formalizations import standard Agda library modules for the corresponding datatypes
and type constructors, and postulate groups of types with bijections to Agda type terms, as
illustrated for PCF and Scheme in [11].

Environments are functions from the abstract syntax of variables to values in the domain
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of this non-recursive domain in Agda is a simple type definition, together with the definition of
the conventional notation for extending an environment with a single binding:
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ω [ d / v ] = ε v↑ → if v == v↑ then d else ω v↑

Semantic functions. A conventional denotational semantics declares semantic functions from
abstract syntax to domains of denotations, and defines the functions compositionally by semantic
equations. Agda formalization of semantic functions is straightforward, as semantic equations
can be written directly in Agda, and the type-checker reports any missing or overlapping cases.
Some minor lexical adjustments to ε-notation are needed: εx.fx becomes ε x → f x, adjacent
names have to be separated by spaces, and sub- and superscript terms are not supported.
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Conventional denotational definitions usually elide the isomorphisms between domains and their
definitions, but Agda requires explicit use of to and from in the formalization (cf. [17, §10.5]).
The type-checker reports where elided isomorphisms need to be inserted.

Checking computed values. The following rewrite rule allows Agda to automatically
evaluate the denotations of terms in the untyped ε-calculus, thereby supporting trivial proofs of
equivalence. (Caveat: The proofs could be unsound, as the rewrite rule involves postulates.)

open Inverse using (inversel)
to-from-elim : → {f} → to (from f) ↑ f

check-convergence :
! app (lam (x 1) (var x 42))

(app (lam (x 0) (app (var x 0) (var x 0)))
(lam (x 0) (app (var x 0) (var x 0)))) "

↑ ! var x 42 "
check-convergence = refl

to-from-elim = inversel iso refl
{-# REWRITE to-from-elim #-}

check-free :
! app (lam (x 1)

(app (lam (x 42) (var x 1))
(var x 2)))

(var x 42) " ↑ ! var x 42 "
check-free = refl

The denotational semantics of PCF involves explicit use of the fixed-point function fix. Its
lightweight Agda formalization postulates fix f ↑ f (fix f). To use that property directly as a
rewrite rule would lead to non-termination; however, the following derived property can be used,
as it unfolds fix f only when f needs to be applied (as in SIS [8]): fix f p ↑ f (fix f) p.

Future work. It is clearly an abuse of Agda to type-check definitions based on potentially-
unsound postulates. An implementation of some framework for (unguarded) SDT in Agda would
presumably require a significant e!ort, but might contribute to increased interest in SDT, as
well as providing proper foundations for lightweight formalization of denotational semantics.
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module ULC.Domains where

open import Function

using (Inverse; _→_) public

open Inverse {{ ... }}

using (to; from) public

postulate

D↑ : Set

postulate

instance iso : D↑ → (D↑ → D↑)

variable d : D↑

module ULC.Environments where

open import ULC.Variables

open import ULC.Domains

open import Data.Bool using (if_then_else_)

Env = Var → D↑

variable 𝐿 : Env

_[_/_] : Env → D↑ → Var → Env

𝐿 [ d / v ] = 𝑀 v
↓
→ if v == v

↓
then d else 𝐿 v

↓

module ULC.Semantics where

open import ULC.Variables

open import ULC.Terms

open import ULC.Domains

open import ULC.Environments

↔_↗ : Exp → Env → D↑
-- ↔ e ↗ 𝐿 is the value of e with 𝐿 giving the values of free variables

↔ var v ↗ 𝐿 = 𝐿 v

↔ lam v e ↗ 𝐿 = from ( 𝑀 d → ↔ e ↗ (𝐿 [ d / v ]) )

↔ app e1 e2 ↗ 𝐿 = to ( ↔ e1 ↗ 𝐿 ) ( ↔ e2 ↗ 𝐿 )

2

Semantic Equations

D1
�
�! �
 

[D1 ! D1]

[[�]] 2 exp ! [(var ! D1)! D1]

[[v]] ⌘ = ⌘ v

[[�v. e]] ⌘ =  (�x 2 D1. [[e]][⌘ | v : x])

[[e e0]] ⌘ = � ([[e]] ⌘) ([[e0]] ⌘)

We have to prove that all terms in this definition are in the required domains:

�x 2 D1. [[e]][⌘ | v : x] is a continuous function from D1 to D1

the so-defined [[�]] is a continuous function from Env to D1.
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Formalization of Denotational Semantics Peter Mosses

The special module application Inverse {{ ... }} above has the e!ect of declaring the functions
to : D→ → (D→ → D→) and from : (D→ → D→) → D→ to be inverse.

Domain equations in the denotational semantics of other languages generally involve also
some flat domains, and domain constructors for cartesian product and separated sum. Their
lightweight formalizations import standard Agda library modules for the corresponding datatypes
and type constructors, and postulate groups of types with bijections to Agda type terms, as
illustrated for PCF and Scheme in [11].

Environments are functions from the abstract syntax of variables to values in the domain
D→. Ordering them pointwise defines a domain of environments. The lightweight formalization
of this non-recursive domain in Agda is a simple type definition, together with the definition of
the conventional notation for extending an environment with a single binding:
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ω [ d / v ] = ε v↑ → if v == v↑ then d else ω v↑

Semantic functions. A conventional denotational semantics declares semantic functions from
abstract syntax to domains of denotations, and defines the functions compositionally by semantic
equations. Agda formalization of semantic functions is straightforward, as semantic equations
can be written directly in Agda, and the type-checker reports any missing or overlapping cases.
Some minor lexical adjustments to ε-notation are needed: εx.fx becomes ε x → f x, adjacent
names have to be separated by spaces, and sub- and superscript terms are not supported.

!_" : Exp → Env → D→
! var v " ω = ω v

! lam v e " ω = from ( ε d → ! e " (ω [ d / v ]) )
! app e1 e2 " ω = to ( ! e1 " ω ) ( ! e2 " ω )

Conventional denotational definitions usually elide the isomorphisms between domains and their
definitions, but Agda requires explicit use of to and from in the formalization (cf. [17, §10.5]).
The type-checker reports where elided isomorphisms need to be inserted.

Checking computed values. The following rewrite rule allows Agda to automatically
evaluate the denotations of terms in the untyped ε-calculus, thereby supporting trivial proofs of
equivalence. (Caveat: The proofs could be unsound, as the rewrite rule involves postulates.)

open Inverse using (inversel)
to-from-elim : → {f} → to (from f) ↑ f

check-convergence :
! app (lam (x 1) (var x 42))

(app (lam (x 0) (app (var x 0) (var x 0)))
(lam (x 0) (app (var x 0) (var x 0)))) "

↑ ! var x 42 "
check-convergence = refl

to-from-elim = inversel iso refl
{-# REWRITE to-from-elim #-}

check-free :
! app (lam (x 1)

(app (lam (x 42) (var x 1))
(var x 2)))

(var x 42) " ↑ ! var x 42 "
check-free = refl

The denotational semantics of PCF involves explicit use of the fixed-point function fix. Its
lightweight Agda formalization postulates fix f ↑ f (fix f). To use that property directly as a
rewrite rule would lead to non-termination; however, the following derived property can be used,
as it unfolds fix f only when f needs to be applied (as in SIS [8]): fix f p ↑ f (fix f) p.

Future work. It is clearly an abuse of Agda to type-check definitions based on potentially-
unsound postulates. An implementation of some framework for (unguarded) SDT in Agda would
presumably require a significant e!ort, but might contribute to increased interest in SDT, as
well as providing proper foundations for lightweight formalization of denotational semantics.
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(λx1 . x42)((λx0 . x0x0)(λx0 . x0x0)) ≡ x42

{-# OPTIONS --rewriting --confluence-check #-}

open import Agda.Builtin.Equality

open import Agda.Builtin.Equality.Rewrite

module ULC.Checks where

open import ULC.Domains

open import ULC.Variables

open import ULC.Terms

open import ULC.Semantics

open import Relation.Binary.PropositionalEquality using (refl)

open Inverse using (inverse
l
; inverse

r
)

to-from-elim : → {f} → to (from f) ↑ f

to-from-elim = inverse
l
iso refl

from-to-elim : → {d} → from (to d) ↑ d

from-to-elim = inverse
r
iso refl

{-# REWRITE to-from-elim #-}

-- The following proofs are potentially unsound,
-- due to rewriting using the postulated iso

-- (𝐿x1.x1)x42 = x42
check-id :

↓ app (lam (x 1) (var x 1))

(var x 42) ↔ ↑ ↓ var x 42 ↔
check-id = refl

-- (𝐿x1.x42)x0 = x42
check-const :

↓ app (lam (x 1) (var x 42))

(var x 0) ↔ ↑ ↓ var x 42 ↔
check-const = refl

-- (𝐿x0.x0 x0)(𝐿x0.x0 x0) = ...
-- check-divergence :
-- ↓ app (lam (x 0) (app (var x 0) (var x 0)))
-- (lam (x 0) (app (var x 0) (var x 0))) ↔
-- ↑ ↓ var x 42 ↔
-- check-divergence = refl

-- (𝐿x1.x42)((𝐿x0.x0 x0)(𝐿x0.x0 x0)) = x42
check-convergence :

↓ app (lam (x 1) (var x 42))

(app (lam (x 0) (app (var x 0) (var x 0)))

(lam (x 0) (app (var x 0) (var x 0)))) ↔
↑ ↓ var x 42 ↔

check-convergence = refl
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Formalization of Denotational Semantics Peter Mosses

The special module application Inverse {{ ... }} above has the e!ect of declaring the functions
to : D→ → (D→ → D→) and from : (D→ → D→) → D→ to be inverse.

Domain equations in the denotational semantics of other languages generally involve also
some flat domains, and domain constructors for cartesian product and separated sum. Their
lightweight formalizations import standard Agda library modules for the corresponding datatypes
and type constructors, and postulate groups of types with bijections to Agda type terms, as
illustrated for PCF and Scheme in [11].

Environments are functions from the abstract syntax of variables to values in the domain
D→. Ordering them pointwise defines a domain of environments. The lightweight formalization
of this non-recursive domain in Agda is a simple type definition, together with the definition of
the conventional notation for extending an environment with a single binding:

Env = Var → D→ _[_/_] : Env → D→ → Var → Env
ω [ d / v ] = ε v↑ → if v == v↑ then d else ω v↑

Semantic functions. A conventional denotational semantics declares semantic functions from
abstract syntax to domains of denotations, and defines the functions compositionally by semantic
equations. Agda formalization of semantic functions is straightforward, as semantic equations
can be written directly in Agda, and the type-checker reports any missing or overlapping cases.
Some minor lexical adjustments to ε-notation are needed: εx.fx becomes ε x → f x, adjacent
names have to be separated by spaces, and sub- and superscript terms are not supported.

!_" : Exp → Env → D→
! var v " ω = ω v

! lam v e " ω = from ( ε d → ! e " (ω [ d / v ]) )
! app e1 e2 " ω = to ( ! e1 " ω ) ( ! e2 " ω )

Conventional denotational definitions usually elide the isomorphisms between domains and their
definitions, but Agda requires explicit use of to and from in the formalization (cf. [17, §10.5]).
The type-checker reports where elided isomorphisms need to be inserted.

Checking computed values. The following rewrite rule allows Agda to automatically
evaluate the denotations of terms in the untyped ε-calculus, thereby supporting trivial proofs of
equivalence. (Caveat: The proofs could be unsound, as the rewrite rule involves postulates.)

open Inverse using (inversel)
to-from-elim : → {f} → to (from f) ↑ f

check-convergence :
! app (lam (x 1) (var x 42))

(app (lam (x 0) (app (var x 0) (var x 0)))
(lam (x 0) (app (var x 0) (var x 0)))) "

↑ ! var x 42 "
check-convergence = refl

to-from-elim = inversel iso refl
{-# REWRITE to-from-elim #-}

check-free :
! app (lam (x 1)

(app (lam (x 42) (var x 1))
(var x 2)))

(var x 42) " ↑ ! var x 42 "
check-free = refl

The denotational semantics of PCF involves explicit use of the fixed-point function fix. Its
lightweight Agda formalization postulates fix f ↑ f (fix f). To use that property directly as a
rewrite rule would lead to non-termination; however, the following derived property can be used,
as it unfolds fix f only when f needs to be applied (as in SIS [8]): fix f p ↑ f (fix f) p.

Future work. It is clearly an abuse of Agda to type-check definitions based on potentially-
unsound postulates. An implementation of some framework for (unguarded) SDT in Agda would
presumably require a significant e!ort, but might contribute to increased interest in SDT, as
well as providing proper foundations for lightweight formalization of denotational semantics.
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– potentially unsafe!



Other examples: PCF, Scheme
 – pdmosses.github.io/xds-agda/
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https://pdmosses.github.io/xds-agda/


Safe lightweight Agda formalization?
 – future work

Implement SDT (Synthetic Domain Theory) 

‣ use plain Agda


‣ embed Agda types as predomains


‣ assume only properties consistent with MLTT


‣ make functions implicitly continuous


‣ allow unrestricted recursive domain definitions


‣ …
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