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Computational Formulas
General Examples

The elementary computationally relevant formulas in our context are of
the form

A ∨ B and ∃xA.

▶ A → B is computationally relevant iff B is.

▶ A ∧ B is computationally relevant iff at least one of the conjunction
parts is computationally relevant.

▶ ∀xA is computationally relevant iff A is.

Note:
Equalities and boolean terms are non-computational.
Examples are ¬A for any formula A;
A ∨b B, A ∧b B for boolean terms A and B, as well as
n = gcd(n,m), ∃<Sm

i i · n = m, ...
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Formal Program Extraction from Proofs
Compact Overview

Let a computationally relevant formula A be given.

From A one can calculate the type τ(A) and the realiser predicate Ar

of A.

From a formal proof M of A one can construct the extracted term
et(M) of type τ(A).

If A and M are r-free, the soundness theorem states

Ar et(M).

The construction of et(M) is implemented in Minlog.
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Minlog
Proof Assistant

▶ Developed in the 1990s by the Logic Group at
Ludwig Maximilian University of Munich, led by
Helmut Schwichtenberg.

▶ Implemented in the programming language
Scheme.

▶ Based on the Theory of Computational
Functionals, which builds on partial continuous
functionals and information systems.

▶ Uses tactic scripts that are closely aligned with
traditional textbook-style proofs.

▶ Enables formal program extraction from proofs,
with output in Haskell.

▶ Especially well-suited for constructive analysis.

Novelty: Number theory in Minlog with program extraction.
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Numeric types
Nat vs. Pos

The natural numbers N are given by

0 : N, S : N → N.

The positive binary numbers P are given by

1 : P, S0 : P → P, S1 : P → P.

There are canonical functions

PosToNat : P → N and NatToPos : N → P,

with NatToPos(0) := 1.
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GCD algorithm
Euclidean algorithm

Definition
The greatest common divisor on the natural numbers is defined by the
following rules:

gcd(0, n) := n

gcd(m, 0) := m

gcd(Sm,S n) :=

{
gcd(Sm, n −m) if m < n

gcd(m − n,S n) otherwise
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GCD algorithm
Stein’s algorithm

Definition
The greatest common divisor on the positive binary numbers is defined
by the following rules:

gcd(1, p) := 1

gcd(S0 p, 1) := 1

gcd(S0 p,S0 q) := S0(gcd(p, q))

gcd(S0 p,S1 q) := gcd(p,S1 q)

gcd(S1 p, 1) := 1

gcd(S1 p,S0 q) := gcd(S1 p, q)

gcd(S1 p,S1 q) :=


gcd(S1 p, q − p) if p < q

gcd(p − q,S1 q) if p > q

S1 p otherwise.
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Versions of Bézout’s Identity

Theorem (Bézout’s identity)
For two integers a, b ∈ Z there are u, v ∈ Z with gcd(a, b) = ua+ vb.

Theorem (Bézout’s identity on natural numbers)

∀n,m∃l0∃l1 . gcd(n,m) + l0 · n = l1 ·m ∨ gcd(n,m) + l0 ·m = l1 · n

Theorem (Positive binary version of Bézout’s identity)

∀p0,p1 . ∃q q · p0 = p1

∨ ∃q q · p1 = p0

∨ ∃q0∃q1 gcd(p0, p1) + q0 · p0 = q1 · p1
∨ ∃q0∃q1 gcd(p0, p1) + q1 · p1 = q0 · p0
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Versions of Bézout’s Identity
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The Fundamental Theorem of Arithmetic
Existence of the Prime Factorisation

Theorem

∀p∃ps∃m. Pm(ps) ∧
∏
i<m

ps(i) = p

Notation.
ps : N → P∏

i<0 ps(i) := 1,
∏

i<n+1 ps(i) :=
(∏

i<n ps(i)
)
· ps(n)
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The Fundamental Theorem of Arithmetic
Uniqueness of the Prime Factorisation

Theorem

∀n,m,ps,qs . Pn(ps) → Pm(qs) →
∏
i<n

ps(i) =
∏
i<m

qs(i) →

n = m ∧ ∃f ∃g (Pmsn(f , g) ∧ ∀i<nps(f i) = qs(i)) .

Notation.
f , g : N → N,
Pmsn(f , g) :⇔ f ◦ g = g ◦ f = id ∧ ∀i≥nf (i) = i
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Fermat Factorisation
Motivation

For natural numbers a > b, we have

a2 − b2 = (a+ b)(a− b).

Idea: Let n be given, search for m such that m2 − n is a square, say
m2 − n = l2, then n = (m + l)(m − l). If m − l > 1, this yields a
non-trivial factorisation of n.

Question: Is this search always successful for composite numbers? And
is this search bounded?

Answer: Yes, for odd numbers.
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Fermat Factorisation

Lemma
Let p = 2q + 1 > 1 be an odd number, that is not a perfect square. If p
is a composite number, then p = p21 − p20 with p0 < p1 < q.

Proof.
Let p = q0 · q1 with q0 < q1. As p is odd, also q0, q1 must be odd, hence

q0 = 2r0 + 1 and q1 = 2r1 + 1.

We define

p0 :=
q1 − q0

2
= r1 − r0 > 0, p1 :=

q1 + q0
2

= r1 + r0 + 1 > 0.

Then

p21 − p20 = q0 · q1 = p.

Clearly, p0 < p1. Furthermore, q0, q1 > 2 and q0, q1 < q, therefore
p1 < q.
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Fermat Factorisation

Theorem
Let p > 1 be a natural number. Then p is either prime or there are
q0, q1 > 1 with p = q0 · q1.

Proof.
Without loss of generality, we may assume that p = 2q + 1 is odd, not a
perfect square, and p /∈ {3, 5}.
From p > 5 we get ⌊√p⌋ < q (!), and therefore define

l := µ⌊√p⌋≤i<q(IsSq(i
2 − p)).

If l = q there is not i < q with IsSq(i2 − p) and therefore p is prime by

the lemma above. If l < q, we have l2 − p = r2 for r = ⌊
√

l2 − p⌋.
Therefore p = l2 − r2 = (l + r)(l − r). Furthermore l − r ̸= 1 (!), which
completes the proof.
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Thank you!
Questions are welcome.


