Efficient Program Extraction in Elementary
Number Theory using the Proof Assistant Minlog

Franziskus Wiesnet

TU Wien
This research was funded by the Austrian Science Fund (FWF) 10.55776/ESP576.

U
AT S

)
\4 (S »
/YPEs 262

TYPES 2025 - June 12, 2025

Computational Formulas

General Examples

FWF i

Computational Formulas

General Examples

The elementary computationally relevant formulas in our context are of
the form

AV B and JA.

» A — B is computationally relevant iff B is.

> A A B is computationally relevant iff at least one of the conjunction
parts is computationally relevant.

> VA is computationally relevant iff A is.

FWF G

Computational Formulas

General Examples

The elementary computationally relevant formulas in our context are of
the form
AV B and JA.

» A — B is computationally relevant iff B is.
> A A B is computationally relevant iff at least one of the conjunction
parts is computationally relevant.

> VA is computationally relevant iff A is.

Note:

Equalities and boolean terms are non-computational.
Examples are —A for any formula A;

AVP B AAP B for boolean terms A and B, as well as
n = gcd(n, m), ﬂfsmi n=m, ...

FWF G

Formal Program Extraction from Proofs

Compact Overview

FWF i

Formal Program Extraction from Proofs

Compact Overview

Let a computationally relevant formula A be given.

FWF G,

Formal Program Extraction from Proofs

Compact Overview

Let a computationally relevant formula A be given.

From A one can calculate the type 7(A) and the realiser predicate A"
of A.

FWF G

Formal Program Extraction from Proofs

Compact Overview

Let a computationally relevant formula A be given.

From A one can calculate the type 7(A) and the realiser predicate A"
of A.

From a formal proof M of A one can construct the extracted term
et(M) of type 7(A).

FWF G

Formal Program Extraction from Proofs

Compact Overview

Let a computationally relevant formula A be given.

From A one can calculate the type 7(A) and the realiser predicate A"
of A.

From a formal proof M of A one can construct the extracted term
et(M) of type 7(A).

If Aand M are r-free, the soundness theorem states

A" et(M).

FWF G

Formal Program Extraction from Proofs

Compact Overview

Let a computationally relevant formula A be given.

From A one can calculate the type 7(A) and the realiser predicate A"
of A.

From a formal proof M of A one can construct the extracted term
et(M) of type 7(A).

If Aand M are r-free, the soundness theorem states

A" et(M).

The construction of et(M) is implemented in Minlog. i

FWF G

Minlog

Proof Assistant

FWF &

Minlog

Proof Assistant

Developed in the 1990s by the Logic Group at
Ludwig Maximilian University of Munich, led by
Helmut Schwichtenberg.

Implemented in the programming language
Scheme.

Based on the Theory of Computational
Functionals, which builds on partial continuous
functionals and information systems.

Uses tactic scripts that are closely aligned with
traditional textbook-style proofs.

Enables formal program extraction from proofs,
with output in Haskell.

Especially well-suited for constructive analysis.

FWF G

Minlog

Proof Assistant

>

>

Developed in the 1990s by the Logic Group at
Ludwig Maximilian University of Munich, led by
Helmut Schwichtenberg.

Implemented in the programming language
Scheme.

Based on the Theory of Computational
Functionals, which builds on partial continuous
functionals and information systems.

Uses tactic scripts that are closely aligned with
traditional textbook-style proofs.

Enables formal program extraction from proofs,
with output in Haskell.

Especially well-suited for constructive analysis.

Novelty: Number theory in Minlog with program extraction.

FWF G

Numeric types

Nat vs. Pos

FWF i

Numeric types

Nat vs. Pos

The natural numbers N are given by

0:N, S:N—N.

FWF G

Numeric types

Nat vs. Pos

The natural numbers N are given by

0:N, S:N—N.

The positive binary numbers P are given by

1:P, So:P—P, S;:P—>DP.

FWF G

Numeric types

Nat vs. Pos

The natural numbers N are given by

0:N, S:N—N.

The positive binary numbers P are given by

1:P, So:P—P, S;:P—>DP.

There are canonical functions
PosToNat: P — N and NatToPos: N — P,

with NatToPos(0) := 1.

FWF G

GCD algorithm

Euclidean algorithm

FWF i

GCD algorithm

Euclidean algorithm

Definition
The greatest common divisor on the natural numbers is defined by the
following rules:

ged(0,n) :=n

ged(m,0) :=m

cd(S m, S n) = Smnfm) if m<n
& B m—n,Sn) otherwise

FWF G

GCD algorithm

Stein’s algorithm

FWF i

GCD algorithm

Stein’s algorithm

Definition
The greatest common divisor on the positive binary numbers is defined
by the following rules:

ged(1, p) :
gcd(So p, 1) :
gcd(Sop,So q) =
)

1):

)

gcd(So p; S1 9 cd(p,S1q)
gcd(S1 p,

ged(S1p,So q

1
1
So(ged(p,)
g
1

= gcd(S1p, q)

ged(S1p,g—p) ifp<q
gcd(S1p,519) := { ged(p— q,S19) ifp>q
Sip otherwise.

FWF G

Versions of Bézout's ldentity

Versions of Bézout's ldentity

Theorem (Bézout's identity)
For two integers a, b € Z there are u,v € Z with gcd(a, b) = ua + vb.

FWF G

Versions of Bézout's ldentity

Theorem (Bézout's identity)

For two integers a, b € Z there are u,v € Z with gcd(a, b) = ua + vb.

Theorem (Bézout's identity on natural numbers)

Vo,m33y. ged(n,m) +l-n=h-mVged(n,m)+l-m=1h-n

FWF G

Versions of Bézout's ldentity

Theorem (Bézout's identity)
For two integers a, b € Z there are u,v € Z with gcd(a, b) = ua + vb.

Theorem (Bézout's identity on natural numbers)

Vo,m33y. ged(n,m) +l-n=h-mVged(n,m)+l-m=1h-n

Theorem (Positive binary version of Bézout's identity)

Voo,p- Jq G Po = P1
V. 3¢q-p1=po
V' g3 ged(po,p1) + g0 po = q1 - p1
V' 3g,3q ged(po, p1) + 91 P1=qo" po

FWF Gt

The Fundamental Theorem of Arithmetic

Existence of the Prime Factorisation

FWF i

The Fundamental Theorem of Arithmetic

Existence of the Prime Factorisation

Theorem

Vo3psIm. Pm(ps) A [ps(i) = p

i<m

The Fundamental Theorem of Arithmetic

Existence of the Prime Factorisation

Theorem
Vo3psIm. Pm(ps) A [ps(i) = p
i<m
Notation.
ps:N—P

Hi<o ps(i) :== 1, Hi<n+l ps(i) := (Hi<n ps(i)) - ps(n)

FWF Gt

The Fundamental Theorem of Arithmetic

Uniqueness of the Prime Factorisation

FWF i

The Fundamental Theorem of Arithmetic

Uniqueness of the Prime Factorisation

Theorem

Vompsas: Pa(ps) = Pm(as) = [[ps(i) = [as(i) =
i<n i<m

n=m A F¢3g (Pms,(f,g) AVicnps(f i) = gs(i)).

FWF Gt

The Fundamental Theorem of Arithmetic

Uniqueness of the Prime Factorisation

Theorem

Vompsas: Pa(ps) = Pm(as) = [[ps(i) = [as(i) =
i<n i<m
n=m A F¢3g (Pms,(f,g) AVicnps(f i) = gs(i)).

Notation.
f,g :N—=N,
Pms,(f,g) = fog=gof=id A Vis,f(i)=1i

FWF G

Fermat Factorisation

Motivation

FWF i

Fermat Factorisation

Motivation

For natural numbers a > b, we have

a’ — b* = (a+ b)(a— b).

FWF Gt

Fermat Factorisation

Motivation

For natural numbers a > b, we have

a’ — b* = (a+ b)(a— b).

Idea: Let n be given, search for m such that m?—nisa square, say
m? —n=1? then n=(m+[)(m—1). If m—1> 1, this yields a
non-trivial factorisation of n.

FWF G

Fermat Factorisation

Motivation

For natural numbers a > b, we have

a’ — b* = (a+ b)(a— b).

Idea: Let n be given, search for m such that m?—nisa square, say
m? —n=1? then n=(m+[)(m—1). If m—1> 1, this yields a
non-trivial factorisation of n.

Question: Is this search always successful for composite numbers? And
is this search bounded?

FWF G

Fermat Factorisation

Motivation

For natural numbers a > b, we have

a’ — b* = (a+ b)(a— b).

Idea: Let n be given, search for m such that m?—nisa square, say
m? —n=1? then n=(m+[)(m—1). If m—1> 1, this yields a
non-trivial factorisation of n.

Question: Is this search always successful for composite numbers? And
is this search bounded?

Answer: Yes, for odd numbers.

FWF G

Fermat Factorisation

FWF i

Fermat Factorisation

Lemma
Let p=2q+ 1> 1 be an odd number, that is not a perfect square. If p
is a composite number, then p = p? — p3 with po < p1 < q.

FWF G

Fermat Factorisation

Lemma
Let p=2q+ 1> 1 be an odd number, that is not a perfect square. If p
is a composite number, then p = p? — p3 with po < p1 < q.

Proof.
Let p = qo - g1 with go < g1. As p is odd, also qg, g1 must be odd, hence

go=2rn+1 and g1 =2n +1.

We define
- +
p()::qlzqo:rl—ro>07 p1::q12q0:r1+r0+1>0.
Then

PP =do = p.

Clearly, pg < p1. Furthermore, g, g1 > 2 and qo, g1 < g, therefore
p1<gq. U

FWF G

Fermat Factorisation

Theorem
Let p > 1 be a natural number. Then p is either prime or there are

do. g1 > 1 with p=qo - q1.

FWF Gt

Fermat Factorisation

Theorem
Let p > 1 be a natural number. Then p is either prime or there are

qo, g1 > 1 with p = qo - q1.

Proof.

Without loss of generality, we may assume that p = 2g + 1 is odd, not a
perfect square, and p ¢ {3,5}.

From p > 5 we get |/p] < q (!), and therefore define

= pyyp<icq(1sSa(i® = p))-

If | = g there is not i < g with 1sSq(i? — p) and therefore p is prime by
the lemma above. If | < g, we have 1> — p = r? for r = |\/I?2 — p]|.
Therefore p = 1> — r?> = (I + r)(/ — r). Furthermore | — r # 1 (1), which
completes the proof. O

FWF G

Thank youl!

Questions are welcome.

