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1 Introduction
Simplicial type theory (STT) was introduced by Riehl and Shulman [8] to give a synthetic
account of ∞-category theory1 based on homotopy type theory. Specifically, STT extends HoTT
with a handful of axioms to tune the theory to a particular collection of models (those based on
the ∞-topoi E∆op

) into which the ∞-category of small (internal) ∞-categories fully-faithfully
embeds [7]. The most important axiom postulates a type I which behaves like a directed interval :

Axiom 1. We assume an h-set I : U such that I is a totally-ordered bounded distributive lattice.

We may then use I to associate to any x, y : X the type of synthetic morphisms hom(x, y):

hom(x, y) =
∑

f :I→X f(0) = x× f(1) = y

Not every type admits a composition operation, so we isolate the data of a composition of two
morphisms using ∆2 =

∑
i,j:I i ≥ j. In particular, α : ∆2 → X intuitively classifies a pair of

composable morphisms in X—α(1,−) and α(−, 0)—together with their composite—λi. α(i, i).

Definition 1.1. A pre-category X is a type where the restriction X∆2 → XI ×X XI is an
equivalence. An inverse to this restriction is denoted ◦ and composes morphisms in X.

While a pre-category has composition operation, to correctly model ∞-categories we further
restrain X such that x =X y coincides with synthetic isomorphisms x ∼= y:

Definition 1.2. A pre-category X is a category if isEquiv
(
λx.(x, x, id) : X →

∑
x,y x

∼= y
)
.

Definition 1.3. A groupoid is a category where all morphisms are isomorphisms.

On top of this handful of basic definitions, Riehl and Shulman [8] developed the theory of
functors, natural transformations, and adjoints within STT and since then authors [1–3, 5, 6, 10,
11] have worked to reproduce or extend ∞-category theory within STT. In particular, the recent
work by Gratzer et al. [5, 6] extends STT with a collection of modalities [4] to construct the
category of groupoids S along with the theory of presheaf categories.

We extend this line of research on modal STT with a series of results in showing that
cocompleteness may be reduced to the existence of various simpler colimits. We are then able
to provide an entirely synthetic account of (generalized) homology and cohomology theories.

Notation 1.4. While the details of the modal STT are not relevant, we note that it generalizes
Shulman [9] and, in particular, includes the ability to quantify over only the objects of categories
i.e., to treat such elements non-functorially. These non-functorial variables are annotated by ♭.

2 Colimits and cocompleteness
Our focus is to analyze conditions equivalent to the following:

Definition 2.1. A category C is cocomplete if C → CI is a right adjoint for all I :♭ U0.

1By ∞-category theory we specifically mean (∞, 1)-category theory.
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Our main results offer simpler alternative conditions for a category to be cocomplete.

Theorem 2.2. A category C is cocomplete if any of the following hold:

1. C has pushouts as well as colimits indexed by groupoids and crisp excluded middle holds
(for every h-proposition ϕ :♭ U either ϕ or ¬ϕ holds).

2. C has finite coproducts and all sifted colimits

3. C has all finite colimits and all filtered colimits.

The latter two conditions are both necessary and sufficient.

In the above, filtered and sifted colimits are defined using the notion of cofinal maps as
introduced in STT by Gratzer, Weinberger, and Buchholtz [6] and closely follow the standard
definitions from ∞-category theory: A category C is sifted if C → Cn is right cofinal for all
n : Nat and filtered if C → CK is right cofinal for all finite complexes K. In fact, in ibid. it is
shown that the category of S-valued presheaves on C is the free cocompletion.

3 Spectra and (co)homology
We apply the above results to the category of spectra Sp. If (∞-)groupoids replace the category
of sets in ∞-category theory, spectra take the place of abelian groups. We are now able to
show that Sp is stable (Lemma 3.3) and use this to construct homology theories satisfying the
Eilenberg–Steenrod axioms.

Definition 3.1. Sp is given by the limit (computed as in Book HoTT) lim←−(S∗
Ω←− S∗

Ω←− . . . ).

Lemma 3.2. Sp has all filtered colimits and all limits.

Lemma 3.3. Sp is finitely (co)complete, 0Sp
∼= 1Sp, and pushouts and pullbacks coincide.

Corollary 3.4. Sp is cocomplete.

Proof. Apply Theorem 2.2 to Lemmas 3.2 and 3.3.

A fundamental example of a spectrum is HZ, the Eilenberg–MacLane spectrum given by
the sequence of Eilenberg–MacLane spaces (K(Z, 0),K(Z, 1), . . . ). By Gratzer, Weinberger,
and Buchholtz [6], there is an equivalence between cocontinuous maps S → Sp and elements
of spectra and we write H : S → Sp for the cocontinuous functor induced by HZ. We further
write πi : Sp→ Ab for the functor sending X to π0(proji(X)).

Lemma 3.5. If X → Y and Z = Y ⊔X 1 then there is a long exact sequence of abelian groups:

πiX πiY πiZ πi−1X . . .

Theorem 3.6. The functors πi ◦H : S → Ab satisfies the Eilenberg–Steenrod axioms.

Proof. Of the Eilenberg–Steenrod axioms (homotopy invariance, excision, dimension, and
additivity), homotopy invariance and dimension follow more-or-less by definition. Excision
states that cofibers in S are sent to long exact sequences. This is a corollary of the cocontinuity
of H alongside Lemma 3.5. The additivity axiom states that that coproducts are preserved
by Hi. For finite coproducts, Lemma 3.3 implies that finite coproducts agree with finite
products and πi : Sp→ Ab sends finite products to direct sums by calculations. For the general
case, one decomposes

∐
i:I Xi for a discrete set I into the filtered colimit of finite colimits

lim−→(n,f):
∑

n:N In

∐
k≤n Xf(i) to reduce to the finite case.
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