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Introduction

Modern software applications are often implemented as networks of (micro)services that com-
municate via message-passing. Many common protocols rely on forms of remote procedure
calls (RPC), where services (acting as RPC clients) perform external calls by sending requests
to other services (acting as RPC servers) and then awaiting a response. For example, the
Open Telecom Platform (OTP) and languages like Erlang and Elixir provide widely-used be-
haviours (like gen server and gen statem) to the development of RPC-based services [6]. Such
behaviours offer what we dub single-threaded RPC (SRPC), where each service handles one re-
quest at a time and remains idle while waiting for a response to a request that it sent; similar
SRPC patterns can be found in popular actor frameworks like Akka/Pekko [7].
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Figure 1: Deadlock example.
The numbers show the order in
which requests are sent.

Such systems can run into deadlocks if a group of services end
up waiting on each other in a circular dependency. Correctly iden-
tifying and fixing such deadlocks can be hard: in large distributed
systems with high traffic, observers may see that part of the system
is unresponsive and some requests time out, but these symptoms can
be mistakenly attributed to performance issues. Deadlocks can be
potentially prevented via static analysis [11, 15, 12, 13] — although
this requires access to the source code of the whole system (which
may not be available) and can produce false positives (which may be undesirable). In these
cases, runtime verification via monitors [2, 8] can be a more practical method for identifying
deadlocks as they occur.

A monitor is a process that oversees a service in order to identify faulty states. We are inter-
ested in developing distributed deadlock detection monitors that do not introduce centralised
bottlenecks; moreover, we require our monitors to be black-box and outline, i.e., they can only
observe the incoming/outgoing messages of each service without access to its internals.

In this work, we present the Coq mechanisation1 of a theory that formalises networks of
SRPC services with and without monitors, and a distributed black-box deadlock detection
monitoring algorithm (inspired by [5, 14]) which we prove sound and complete. We also provide
a framework (with an API inpired by Erlang and Elixir gen servers) to conveniently model
SRPC-based distributed applications for which we automatically construct correct deadlock
monitors. To the best of our knowledge, we provide the first mechanised correctness proof of a
distributed deadlock detection algorithm.

1https://github.com/radrow/dlstalk-coq

https://github.com/radrow/dlstalk-coq
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Mechanisation and Results

CoInductive Proc := (* Service implementation *)

| Recv (select : Name → option (Val → Proc))
| Send (to : Name) (msg : Val) (P : Proc)
| Tau (P : Proc).

Record Serv := (* service *)

{ i_que : list Msg; proc : Proc; o_que : list Msg}.
Record MServ := (* monitored service *)

{ m_que : list Msg; state : MProc; serv : Serv}.

Figure 2: Service DSL as defined in Coq.

We define networks as functions from a set of names
to states of services. In our model, communication is
asynchronous, meaning that services never block when
sending a message. Services are programmed directly
in Gallina[10] via a coinductive DSL providing prim-
itives for sending and receiving messages, inspired by
process calculi: see fig. 2, where the option continua-

tion in Recv allows the selective reception of messages
based on senders. This design makes our model remarkably expressive while keeping our for-
malisation focused on communication semantics. Moreover, Coq entirely covers bindings and
substitutions, which can notoriously complicate proofs if otherwise embedded [3, 1, 4]. On top
of this DSL, we specify SRPC as a coinductive property that classifies service states as either:
Ready while the service awaits requests, Work -ing when it actively processes a request, and

Lock -ed if it awaits a response from another service.
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Figure 3: Journey of messages in a moni-
tored service: (1) a message from the network
reaches the monitor buffer q̂; (2) the message

is forwarded to the service’s input queue qi;
(3) the service process P receives the mes-
sage; (4) the service sends some message via
its output queue qo; (5) the output message
reaches the monitor queue q̂; (6) the mes-
sage is forwarded to the network. The dotted
arrows mean that the monitor observes mes-
sages (2) and (6), but it cannot observe the
other message exchanges.

We implement monitoring by instrumenting each ser-
vice with a monitor process M and a monitor mes-
sage buffer q̂. Our monitors are intercepting, i.e., they
act as proxies between their services and the network.
Consequently, all incoming and outgoing messages pass
through the monitor and its buffer, allowing the moni-
tor M to observe the service’s communication, update its
state, and exchange messages with other monitors. Fig-
ure 3 illustrates how a monitored service interacts with
the rest of the network.

Instrumentations ( instr ) are functions that trans-
form unmonitored SRPC networks (of type Net ) into
monitored ones (of type MNet ) by equipping each service
with a monitor process and buffer. Vice versa, deinstr “strips” monitors from a monitored
network. We prove that instrumentation is transparent, i.e., it does not introduce nor suppress
behaviours w.r.t. the original network. We formalise transparency as an operational correspon-
dence [9] (proving soundness and completeness) between monitored and unmonitored networks:
see Coq theorems in fig. 4a, where a path is a sequence of reduction steps.

Variable apply_instr (i : instr) : Net → MNet.
Coercion apply_instr : instr >-> Funclass.

Theorem transp_sound :
∀ (N0 : Net) (i0 : instr) path’ (MN1 : MNet),
(i0 N0 =[ path’ ]⇒ MN1) →

∃ path, (N0 =[ path ]⇒ deinstr MN1).

Theorem transp_complete :
∀ (N0 N1 : Net) path (i0 : instr),
(N0 =[ path ]⇒ N1) →

∃ path’ (i1 : instr), (i0 N0 =[ path’ ]⇒ i1 N1).

(a) Transparency of monitoring.

Definition detect_sound (N0 : Net) (i0 : instr) :=
∀ path’ MN1, (i0 N0 =[ path’ ]⇒ MN1) ∧ reports_deadlock MN1 →
∃ path, (N0 =[ path ]⇒ deinstr MN1) ∧ has_deadlock (deinstr MN1).

Definition detect_complete (N0 : Net) (i0 : instr) :=
∀ path N1, (N0 =[ path ]⇒ N1) ∧ has_deadlock N1 →
∃ path’ (i1 : instr),
(i0 N0 =[ path’ ]⇒ i1 N1) ∧ reports_deadlock (i1 N1).

Theorem gen_net_instr_correct : ∀ dapp,
detect_sound (gen_instr (gen_net dapp))

∧ detect_complete (gen_instr (gen_net dapp)).

(b) Correctness of deadlock detection.

Figure 4: Key statements of the project as formalised in Coq.

Concretely, each monitor M implements a deadlock detection algorithm that, based on the
incoming/outgoing messages it observes, estimates the current state of the service it oversees.
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In particular, if it infers that the service is awaiting a response, it sends probes (in the style
of [5, 14]) to the monitors of all services from which it receives a request. Monitors communicate
by forwarding such probes; if a monitor receives back a non-outdated probe that it has previously
emitted, then it concludes that there is a dependency cycle and reports a deadlock.

Following runtime verification standards, we define correctness of monitors in fig. 4b as
soundness (every reported deadlock is real) and completeness (all deadlocks are eventually
reported, assuming fairness of components [16]). We finally prove that any distributed appli-
cation modelled with our Erlang/Elixir gen server-inspired framework ( gen net dapp ) can

be correctly instrumented ( gen instr ) and monitored; we achieve this by finding and proving
invariants that characterise correct instrumentations. All proofs are successfully mechanised in
Coq.
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