
Formalising Monitors for Distributed Deadlock Detection

Rados law Jan Rowicki1, Adrian Francalanza2, and Alceste Scalas1

1 Danmarks Tekniske Universitet, Kongens Lyngby, Denmark
rjro@dtu.dk alcsc@dtu.dk

2 University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

Introduction

Modern software applications are often implemented as networks of (micro)services that com-
municate via message-passing. Many common protocols rely on forms of remote procedure
calls (RPC), where services (acting as RPC clients) perform external calls by sending requests
to other services (acting as RPC servers) and then awaiting a response. For example, the
Open Telecom Platform (OTP) and languages like Erlang and Elixir provide widely-used be-
haviours (like gen server and gen statem) to the development of RPC-based services [6]. Such
behaviours offer what we dub single-threaded RPC (SRPC), where each service handles one re-
quest at a time and remains idle while waiting for a response to a request that it sent; similar
SRPC patterns can be found in popular actor frameworks like Akka/Pekko [7].

S1

S3

S2
1

2

34

Figure 1: Deadlock example.
The numbers show the order in
which requests are sent.

Such systems can run into deadlocks if a group of services end
up waiting on each other in a circular dependency. Correctly iden-
tifying and fixing such deadlocks can be hard: in large distributed
systems with high traffic, observers may see that part of the system
is unresponsive and some requests time out, but these symptoms can
be mistakenly attributed to performance issues. Deadlocks can be
potentially prevented via static analysis [11, 15, 12, 13] — although
this requires access to the source code of the whole system (which
may not be available) and can produce false positives (which may be undesirable). In these
cases, runtime verification via monitors [2, 8] can be a more practical method for identifying
deadlocks as they occur.

A monitor is a process that oversees a service in order to identify faulty states. We are inter-
ested in developing distributed deadlock detection monitors that do not introduce centralised
bottlenecks; moreover, we require our monitors to be black-box and outline, i.e., they can only
observe the incoming/outgoing messages of each service without access to its internals.

In this work, we present the Coq mechanisation1 of a theory that formalises networks of
SRPC services with and without monitors, and a distributed black-box deadlock detection
monitoring algorithm (inspired by [5, 14]) which we prove sound and complete. We also provide
a framework (with an API inpired by Erlang and Elixir gen servers) to conveniently model
SRPC-based distributed applications for which we automatically construct correct deadlock
monitors. To the best of our knowledge, we provide the first mechanised correctness proof of a
distributed deadlock detection algorithm.

1https://github.com/radrow/dlstalk-coq

https://github.com/radrow/dlstalk-coq

Verified Monitors for Distributed Deadlock Detection R.J. Rowicki, A. Francalanza, A. Scalas

Mechanisation and Results

CoInductive Proc := (* Service implementation *)

| Recv (select : Name → option (Val → Proc))
| Send (to : Name) (msg : Val) (P : Proc)
| Tau (P : Proc).

Record Serv := (* service *)

{ i_que : list Msg; proc : Proc; o_que : list Msg}.
Record MServ := (* monitored service *)

{ m_que : list Msg; state : MProc; serv : Serv}.

Figure 2: Service DSL as defined in Coq.

We define networks as functions from a set of names
to states of services. In our model, communication is
asynchronous, meaning that services never block when
sending a message. Services are programmed directly
in Gallina[10] via a coinductive DSL providing prim-
itives for sending and receiving messages, inspired by
process calculi: see fig. 2, where the option continua-

tion in Recv allows the selective reception of messages
based on senders. This design makes our model remarkably expressive while keeping our for-
malisation focused on communication semantics. Moreover, Coq entirely covers bindings and
substitutions, which can notoriously complicate proofs if otherwise embedded [3, 1, 4]. On top
of this DSL, we specify SRPC as a coinductive property that classifies service states as either:
Ready while the service awaits requests, Work -ing when it actively processes a request, and

Lock -ed if it awaits a response from another service.

| M |⟨ q̂ ⟨ qi | P | qo⟩ ⟩
1

2
3 4

5
6

Figure 3: Journey of messages in a moni-
tored service: (1) a message from the network
reaches the monitor buffer q̂; (2) the message

is forwarded to the service’s input queue qi;
(3) the service process P receives the mes-
sage; (4) the service sends some message via
its output queue qo; (5) the output message
reaches the monitor queue q̂; (6) the mes-
sage is forwarded to the network. The dotted
arrows mean that the monitor observes mes-
sages (2) and (6), but it cannot observe the
other message exchanges.

We implement monitoring by instrumenting each ser-
vice with a monitor process M and a monitor mes-
sage buffer q̂. Our monitors are intercepting, i.e., they
act as proxies between their services and the network.
Consequently, all incoming and outgoing messages pass
through the monitor and its buffer, allowing the moni-
tor M to observe the service’s communication, update its
state, and exchange messages with other monitors. Fig-
ure 3 illustrates how a monitored service interacts with
the rest of the network.

Instrumentations (instr) are functions that trans-
form unmonitored SRPC networks (of type Net) into
monitored ones (of type MNet) by equipping each service
with a monitor process and buffer. Vice versa, deinstr “strips” monitors from a monitored
network. We prove that instrumentation is transparent, i.e., it does not introduce nor suppress
behaviours w.r.t. the original network. We formalise transparency as an operational correspon-
dence [9] (proving soundness and completeness) between monitored and unmonitored networks:
see Coq theorems in fig. 4a, where a path is a sequence of reduction steps.

Variable apply_instr (i : instr) : Net → MNet.
Coercion apply_instr : instr >-> Funclass.

Theorem transp_sound :
∀ (N0 : Net) (i0 : instr) path’ (MN1 : MNet),
(i0 N0 =[path’]⇒ MN1) →

∃ path, (N0 =[path]⇒ deinstr MN1).

Theorem transp_complete :
∀ (N0 N1 : Net) path (i0 : instr),
(N0 =[path]⇒ N1) →

∃ path’ (i1 : instr), (i0 N0 =[path’]⇒ i1 N1).

(a) Transparency of monitoring.

Definition detect_sound (N0 : Net) (i0 : instr) :=
∀ path’ MN1, (i0 N0 =[path’]⇒ MN1) ∧ reports_deadlock MN1 →
∃ path, (N0 =[path]⇒ deinstr MN1) ∧ has_deadlock (deinstr MN1).

Definition detect_complete (N0 : Net) (i0 : instr) :=
∀ path N1, (N0 =[path]⇒ N1) ∧ has_deadlock N1 →
∃ path’ (i1 : instr),
(i0 N0 =[path’]⇒ i1 N1) ∧ reports_deadlock (i1 N1).

Theorem gen_net_instr_correct : ∀ dapp,
detect_sound (gen_instr (gen_net dapp))

∧ detect_complete (gen_instr (gen_net dapp)).

(b) Correctness of deadlock detection.

Figure 4: Key statements of the project as formalised in Coq.

Concretely, each monitor M implements a deadlock detection algorithm that, based on the
incoming/outgoing messages it observes, estimates the current state of the service it oversees.

2

Verified Monitors for Distributed Deadlock Detection R.J. Rowicki, A. Francalanza, A. Scalas

In particular, if it infers that the service is awaiting a response, it sends probes (in the style
of [5, 14]) to the monitors of all services from which it receives a request. Monitors communicate
by forwarding such probes; if a monitor receives back a non-outdated probe that it has previously
emitted, then it concludes that there is a dependency cycle and reports a deadlock.

Following runtime verification standards, we define correctness of monitors in fig. 4b as
soundness (every reported deadlock is real) and completeness (all deadlocks are eventually
reported, assuming fairness of components [16]). We finally prove that any distributed appli-
cation modelled with our Erlang/Elixir gen server-inspired framework (gen net dapp) can

be correctly instrumented (gen instr) and monitored; we achieve this by finding and proving
invariants that characterise correct instrumentations. All proofs are successfully mechanised in
Coq.

Acknowledgement

This work was partially supported by the Independent Research Fund Denmark project
”Hyben.”

References

[1] Beniamino Accattoli, Horace Blanc, and Claudio Sacerdoti Coen. Formalizing Functions as Pro-
cesses. In ITP 2023 - 14th International Conference on Interactive Theorem Proving, Bialystok,
Poland, July 2023. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi:10.4230/LIPICS.ITP.
2023.5.

[2] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction to runtime verifi-
cation. In Ezio Bartocci and Yliès Falcone, editors, Lectures on Runtime Verification - Introductory
and Advanced Topics, volume 10457 of Lecture Notes in Computer Science, pages 1–33. Springer,
2018. doi:10.1007/978-3-319-75632-5_1.

[3] Jesper Bengtson and Joachim Parrow. Formalising the pi-calculus using nominal logic. Logical
Methods in Computer Science, Volume 5, Issue 2, June 2009. doi:10.2168/lmcs-5(2:16)2009.

[4] Marco Carbone, David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, Frederik Krogsdal Jacob-
sen, Alberto Momigliano, Luca Padovani, Alceste Scalas, Dawit Legesse Tirore, Martin Vassor,
Nobuko Yoshida, and Daniel Zackon. The concurrent calculi formalisation benchmark. In Ilaria
Castellani and Francesco Tiezzi, editors, Coordination Models and Languages - 26th IFIP WG 6.1
International Conference, COORDINATION 2024, Held as Part of the 19th International Feder-
ated Conference on Distributed Computing Techniques, DisCoTec 2024, Groningen, The Nether-
lands, June 17-21, 2024, Proceedings, volume 14676 of Lecture Notes in Computer Science, pages
149–158. Springer, 2024. doi:10.1007/978-3-031-62697-5_9.

[5] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed deadlock detection. ACM
Trans. Comput. Syst., 1(2):144–156, May 1983. doi:10.1145/357360.357365.

[6] Ericsson AB. Erlang/OTP System Documentation 14.2.5.8, chapter 10, pages 313–344. 2025. Ac-
cessed: 2025-03-10. URL: https://www.erlang.org/docs/26/pdf/otp-system-documentation.
pdf.

[7] Erlang/OTP Team. Apache Pekko gRPC. Apache Software Foundation, 2025. Accessed: 2025-
03-10. URL: https://pekko.apache.org/docs/pekko-grpc/current/index.html.

[8] Adrian Francalanza. A theory of monitors. Information and Computation, 281:104704, 2021.
doi:10.1016/j.ic.2021.104704.

[9] Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Inf. Comput., 208(9):1031–1053, 2010. doi:10.1016/J.IC.2010.05.002.

3

https://doi.org/10.4230/LIPICS.ITP.2023.5
https://doi.org/10.4230/LIPICS.ITP.2023.5
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.2168/lmcs-5(2:16)2009
https://doi.org/10.1007/978-3-031-62697-5_9
https://doi.org/10.1145/357360.357365
https://www.erlang.org/docs/26/pdf/otp-system-documentation.pdf
https://www.erlang.org/docs/26/pdf/otp-system-documentation.pdf
https://pekko.apache.org/docs/pekko-grpc/current/index.html
https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1016/J.IC.2010.05.002

Verified Monitors for Distributed Deadlock Detection R.J. Rowicki, A. Francalanza, A. Scalas

[10] Gérard Huet. The Gallina specification language: A case study. In Rudrapatna Shyamasundar,
editor, Foundations of Software Technology and Theoretical Computer Science, pages 229–240,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg. doi:10.1007/3-540-56287-7_108.

[11] Naoki Kobayashi. A partially deadlock-free typed process calculus. ACM Trans. Program. Lang.
Syst., 20(2):436–482, 1998. doi:10.1145/276393.278524.

[12] Naoki Kobayashi. A new type system for deadlock-free processes. In Christel Baier and Holger
Hermanns, editors, CONCUR 2006 - Concurrency Theory, 17th International Conference, CON-
CUR 2006, Bonn, Germany, August 27-30, 2006, Proceedings, volume 4137 of Lecture Notes in
Computer Science, pages 233–247. Springer, 2006. doi:10.1007/11817949_16.

[13] Naoki Kobayashi and Cosimo Laneve. Deadlock analysis of unbounded process networks. Inf.
Comput., 252:48–70, 2017. doi:10.1016/j.ic.2016.03.004.

[14] Don P. Mitchell and Michael J. Merritt. A distributed algorithm for deadlock detection and
resolution. In Proceedings of the Third Annual ACM Symposium on Principles of Distributed
Computing, PODC ’84, page 282–284, New York, NY, USA, 1984. Association for Computing
Machinery. doi:10.1145/800222.806755.

[15] Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In Proceedings of the Joint
Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-
LICS ’14, New York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/

2603088.2603116.

[16] Rob van Glabbeek and Peter Höfner. Progress, justness, and fairness. ACM Comput. Surv.,
52(4):69:1–69:38, 2019. doi:10.1145/3329125.

4

https://doi.org/10.1007/3-540-56287-7_108
https://doi.org/10.1145/276393.278524
https://doi.org/10.1007/11817949_16
https://doi.org/10.1016/j.ic.2016.03.004
https://doi.org/10.1145/800222.806755
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1145/3329125

	References

