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We continue the development of univalent category theory in univalent foundations. Recall
that the Rezk completion [2] provides a universal solution to the problem of constructing a
univalent category from an arbitrary category. In this work, we lift the Rezk completion from
categories to elementary topoi. The results presented below are formalized in (Coq-)UniMath
[6]1.

1 Introduction

Internal to univalent foundations, the “well-behaved categories” are those satisfying a cer-
tain coherence condition: univalence. For every category, one always has a canonical function
idtoisox,y from the identity type x = y, between two objects x and y, to the type x ∼= y of
isomorphisms between them. A univalent category is a category for which idtoisox,y is an
equivalence of types, for every x and y. The univalence requirement for categories can be mo-
tivated by to the variety of examples which satisfy this requirement, and by to the intended
semantics of categories in e.g., Voevodsky’s simplicial set model of HoTT/UF.

Univalent categories are particulary well-behaved. First, notions that are classically unique
up to isomorphism, such as limits, become unique up to identity when working with univalent
categories. Second, isomorphisms of categories coincide with equivalences. Hence, structures
are automatically invariant under equivalences.

Even though many occuring categories are in fact univalent, certain constructions on cat-
egories can fail to produce univalent categories. For example, in categorical logic, the con-
struction of a topos from a tripos (a.k.a., a second-order hyperdoctrine), often produces a
non-univalent topos [3, 4]. Nonetheless, for every category C, we can construct a univalent
category RC(C) and a weak equivalence ηC from C to RC(C) [2]. That is, there is a functor
ηC : C → RC(C) which is fully faithful and essentially surjective on objects; the latter condition
means that for every y : RC(C), there merely exists some x : C and an isomorphism between
F (x) and y. Furthermore, (RC(C), ηC) is universal in the sense that every functor from C to
a univalent category E can be uniquely extended to a functor of type RC(C) → E . Given a
category C, the pair (RC(C), ηC) is referred to as the Rezk completion. Motivated by the
tripos-to-topos construction, we lift the Rezk completion, from categories, to categories with
additional structure; in particular, to elementary topoi.

To prove that the Rezk completion lifts to topoi, it suffices that each of the ingredients
defining topoi suitably transports along those weak equivalences given by the Rezk completion.
This incremental proof strategy is made precise through the language of displayed (bi)categories
[1].

1https://github.com/UniMath/UniMath/blob/master/UniMath/Bicategories/RezkCompletions/

DisplayedRezkCompletions.v,https://github.com/UniMath/UniMath/tree/master/UniMath/Bicategories/
RezkCompletions/StructuredCats, https://github.com/UniMath/UniMath/pull/2035

https://github.com/UniMath/UniMath/blob/master/UniMath/Bicategories/RezkCompletions/DisplayedRezkCompletions.v
https://github.com/UniMath/UniMath/blob/master/UniMath/Bicategories/RezkCompletions/DisplayedRezkCompletions.v
https://github.com/UniMath/UniMath/tree/master/UniMath/Bicategories/RezkCompletions/StructuredCats
https://github.com/UniMath/UniMath/tree/master/UniMath/Bicategories/RezkCompletions/StructuredCats
https://github.com/UniMath/UniMath/pull/2035
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2 Framework

The universal property characterizing the Rezk completion states that every functor into a uni-
valent category factors uniquely through the Rezk completion. The universal property implies
that the inclusion of (the bicategory of) univalent categories UnivCat, into all categories Cat,
has a left biadjoint RC, whose action on objects is given by the Rezk completion. Hence, to
lift the Rezk completion to categories with additional structure, we lift the left biadjoint to the
bicategory whose objects are those structured categories and whose morphisms are structure
preserving functors. For simplicity, we assume that the 2-cells are all natural transformations;
an assumption shared by each of the structures characterizing elementary topoi.

Those bicategories of structured categories inherit much of the structure of the bicategory
of categories. Hence, to reuse the underlying structure, we rely on the theory of displayed
bicategories. To this end, let D be a displayed bicategory over Cat encoding some structure for
categories, whose total bicategory is denoted

∫
D. The restriction of D to UnivCat is denoted

Duniv. Then, the lifting corresponds to the construction of a left biadjoint as depicted in the
following diagram: ∫

Duniv

∫
D

UnivCat Cat

π

?

RC

To construct the left biadjoint, we use that the unit η corresponds pointwise with weak
equivalences into univalent categories. The precise properties that are to be verified are sum-
marized in the following lemma, where local contractibility of D means that every type of
displayed 2-cells is contractible.

Lemma 1. Let D be a locally contractible displayed bicategory over Cat such that

1. for every weak equivalence G : C1 → C2, whose codomain is univalent, and x : D(C1),
there is a given x̂ : D(C2) and a displayed morphism x →G x̂;

2. for every univalent category C3, natural isomorphism α : (G ·H) ⇒ F , terms xi : D(Ci)
(i = 1, 2, 3), and f : x1 →F x2, there is a given f̂ : x2 →H x3.

Then, the pseudofunctor RC : Cat → UnivCat lifts to a biadjoint for
∫
Duniv ↪→

∫
D.

First, observe that we do not use any particular construction of the Rezk completion. The
first condition in Lemma 1 states that every structure transports to the codomain of such a
weak equivalence and that the functor preserves the structure. In particular, the first condition
also holds for C2 := RC(C1) and G := ηC1

. Hence, the Rezk completion inherits the structure
given by D and ηC1

preserves the inherited structure. The second condition expresses that
(RC(C1), ηC1

) not only lives in
∫
Duniv, but is universal w.r.t., those univalent categories which

have the structure. Furthermore, the functoriality of
∫
D →

∫
Duniv follows from the second

condition. Observe that it suffices to only provide the existence part of the universality condition
since the uniqueness follows necessarily from the local contractibility condition.

The assumptions of Lemma 1 are illustrated in the following example:

Example 2. Let D be the Cat-displayed bicategory whose displayed objects are binary prod-
ucts, and whose displayed morphisms witnesses the preservation of those binary products. Then,
condition 1 instantiates to the following statement: For G as above, and x a choice of binary
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products on C1, x̂ are binary products on C2 and G preserves those products. Condition 2 in-
stantiates to: Given such α as above, such that F preserves binary products, then H preserves
binary products.

3 Rezk Completions of Topoi

In this section, we apply Lemma 1 to lift the Rezk completion to topoi. Recall that an elemen-
tary topos is a finitely complete cartesian closed category equipped with a subobject classifier.
A morphism of elementary topoi is a functor which preserves each of the structures involved.
We denote the bicategory of elementary topoi as ElTop, and the bicategory of topoi whose
underlying category is univalent is denoted ElTopuniv. In the formalization, these bicategories
are constructed by stacking different displayed bicategories, starting with Cat, as depicted in
the following diagram:

Topoi

Subobject Classifier Exponentials

Terminal Object Finite Limits Binary Products

Categories

The main result establishes that topoi admit Rezk completions:

Theorem 3. The inclusion ElTopuniv → ElTop admits a left biadjoint.

To prove Theorem 3, we apply Lemma 1 for each of the intermediary displayed bicategories.
In particular, we construct Rezk completions for categories equipped with the structures men-
tioned above. The main challenge in constructing the left biadjoints is transporting the structure
on a category along a weak equivalence, which is the first condition in Lemma 1. In particu-
lar, the univalence of categories ensures that we can apply the essential surjectiveness of the
weak equivalence. The proof strategy for each of these structures follows the same steps as in
Example 2.

We expect our method to apply to other kinds of structure. First, a topos possesses numerous
structures, such as regularity and exactness, and local cartesian closedness, etcera. Second,
there are structures only shared by some topoi, such as the existence of a natural numbers
object. Third, there are other “structured categories” which are not topoi, but for which the
same strategy can also be applied, e.g., abelian categories.

However, Lemma 1 cannot be applied to construct Rezk completions for structures like
monoidal categories [7] and enriched categories [5]. Indeed, the contractibility assumption on
the 2-cells is not generally satisfied in these cases since the natural transformations need to
commute with the additional structure. Nonetheless, one could try to prove a more general
lemma that does apply.

A theoretical obstacle however, is that our framework operates under a crucial assumption:
that the “correct notion of univalence” for the structure in question coincides with the univalence
of the underlying category. This assumption breaks down for both dagger categories, and
enriched categories whose base of enrichment are not assumed to be univalent.
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