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Background: Accessible Sets in Cumulative Hierarchy After Bishop [5] showed that
analysis can be developed constructively without using Brouwer’s intuitionistic mathematics,
several authors investigated a system to formalise Bishop’s constructive analysis. For instance,
Myhill [13] introduced a system of constructive set theory, and later Aczel [1, 2, 3] introduced
another system of constructive set theory called constructive Zermelo-Fraenkel set theory CZF.
On the other hand, Martin-Löf [12] took an approach different from the set-theoretic one: he
formulated a framework of constructive type theory called Martin-Löf type theory MLTT.
This framework follows the Curry-Howard correspondence, and at the same time, comprises a
set of rules to define mathematical objects inductively or recursively.

Aczel’s work on CZF also showed that these two approaches are compatible. He defined
a cumulative hierarchy V of sets as a W-type in MLTT, and interpreted all axioms of CZF
in MLTT. This hierarchy can be considered as a setoid model of CZF: V is a type with
the equivalence relation

.
=, which is defined by the induction principle on V as a W-type. For

any set a : V, one can also define the type index a and the set pred a x, which are the type
of indices for the elements of a and the element of a of index x, respectively. We abbreviate
(i : index a)→ Φ(pred a i) as ∀(x∈a)Φ(x).

As in classical Zermelo-Fraenkel set theory, the transitive closure of a set can be defined in
CZF (see, e.g., [9]). Recall that the transitive closure TC(a) of a set a satisfies the equation

TC(a) = a ∪
⋃
{TC(x) | x ∈ a},

which implies that TC(a) is a transitive set:

∀x∀y(y ∈ x ∈ TC(a)→ y ∈ TC(a)).

So the transitive closure of a set a contains all sets below a in the hierarchy as its elements.
Through Aczel’s interpretation of CZF, one has the corresponding operator tc : V → V in
MLTT.

By using Dybjer’s indexed inductive definition [7], one can then define the accessibility
Acc : V → Set with the constructor prog, the eliminator indAcc, and the computation rule
below: for any universe level `,

prog : (a : V)→ ∀(x∈tc a)Acc x→ Acc a

indAcc : (P : (a : V)→ Acc a→ Set `)→
((a : V)(f : ∀(x∈tc a)Acc x)→

((i : index (tc a))→ P (pred (tc a) i) (f i))→ P a (prog a f))→
(a : V)(c : Acc a)→ P a c

indAcc P h a (prog a f) = h a f (λi.indAcc P h (pred (tc a) i) (f i))
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Roughly speaking, Acc a means that the set a is constructed from below: the constructor prog
says that if all sets below a are constructed then a is constructed as well. The eliminator indAcc
together with the computation rule provides the induction principle along such construction.
Note that Acc is a special case of the accessible part of a binary relation, which can be defined
as an inductive family by Dybjer’s indexed inductive definition. The notion of accessible part
has several applications in the areas of research such as proof theory and term rewriting (see,
e.g., [14] and [4], respectively).

The induction principle for Acc is stronger than the W-induction principle on a : V in the
sense that the former admits the induction hypothesis not only for an arbitrary x ∈ a, but also
for an arbitrary member of the transitive closure tc a. For instance, let

nextU : Σ(A:Set)(A→ Set)→ Σ(A:Set)(A→ Set)

be a universe operator which takes a family of types and returns a Tarski-universe (U,T)
containing all types in this family. Using the induction principle for Acc, one can define a
hierarchy U a t of Tarski-universes with a : V and t : Acc as follows.

U a (prog a f) = fst
(
nextU(index (tc a), λi.U (pred (tc a) i) (f i))

)
Roughly speaking, U a (prog a f) contains as its subuniverses not only U v t for any v ∈ a with
t : Acc v, but also U w s for any w ∈ tc a with s : Acc w.

Though the transitive closure operator tc is accompanied by a similar induction principle
which is stronger than the W-induction principle on V, the Acc-induction principle has an
advantage over that of tc: the Acc-induction principle has the simple and useful computation
rule as seen above. One might try to verify that the tc-induction principle would have the
following computation rule

indtc P h a = h a (λi.indtc P h (pred (tc a) i))

for any a : V with P : V→ Set ` and h : (a : V)→ ∀(x∈tc a)P (pred (tc a) x)→ P a. However, in
intensional MLTT it is implausible that one can obtain this computation rule, and in fact one
should not obtain, otherwise the evaluation of indtc P h a by the ξ-rule does not terminate:

indtc P h a = h a (λi.indtc P h (pred (tc a) i))

= h a (λi.h (pred (tc a) i)(λj.indtc P h (pred (tc (pred (tc a) i)) j))) = · · ·

Aim: Accessible Sets under Function Extensionality We show that the constructor
and eliminator of Acc, namely, the introduction and elimination rules of Acc are derivable in
MLTT with function extensionality: for any universe levels `1 and `2,

funext : (A : Set `1)(B : A→ Set `2)

(f g : (x : A)→ B x)→ ((x : A)→ f x =B x g x)→ f =(x:A)→B x g.

This means that indexed inductive definition is dispensable for formulating the constructor and
eliminator of Acc in MLTT with function extensionality, though its computation rule is still
missing without indexed inductive definition.

For this purpose, we first derive the induction principle on transitive closure tc without
using function extensionality: for any universe level `,

indtc : (P : V→ Set `)→ ((a : V)→ ∀(x∈tc a)P x→ P a)→ (a : V)→ P a.
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The accessibility Acc : V→ Set is then defined as follows: putting P := λa.Set, we define

acc := λa.λg.(i : index (tc a))→ g i, Acc := indtc P acc.

Next, using function extensionality, we prove the following propositional computation rule of
indtc. Essentially, this rule was already proved in the present author’s preprint [15, Appendix].

Proposition. For any P : V → Set `, h : (a′ : V) → ∀(x∈tc a′)P x → P a′ and a : V, we have
the following term of the identity type indtc P h a =P a h a (λi.indtc P h (pred (tc a) i)).

comptc P h a : indtc P h a =P a h a (λi.indtc P h (pred (tc a) i)).

If one takes P and acc as above, then an instance

comptc P acc a : Acc a =Set ∀(x∈tc a)Acc x

is obtained, which is crucial to our argument. Since the direction from the right of this identity
type to the left corresponds to the introduction rule of Acc, we can define the constructor
prog : (a : V)→ ∀(x∈tc a)Acc x→ Acc a by transporting along this direction:

prog := λa.λf.transport (λA.A) (sym (comptc P acc a)) f.

To derive the Acc-elimination rule, we prove (a : V)(c : Acc a) → P a c under the assumptions
of this rule by induction on transitive closure of a. Transporting from Acc a′ to ∀(x∈tc a′)Acc x
for any a′ : V provides the function inv : (a′ : V)→ Acc a′ → ∀(x∈tc a′)Acc x as

inv := λa′.λc′.transport (λA.A) (comptc P acc a′) c′,

so we have inv a c : ∀(x∈tc a)Acc x. By using the assumption

(a : V)(f : ∀(x∈tc a)Acc x)→ ((i : index (tc a))→ P (pred (tc a) i) (f i))→ P a (prog a f)

with the induction hypothesis ∀(x∈tc a)(d : Acc x)→ P x d, we have P a (prog a (inv a c)). As a
general fact on transport, we also have

(A : Set `1)(P : A→ Set `2)(x y : A)(p : x =A y)(c : P x)

→ transport P (sym p) (transport P p c) =P x c,

so prog a (inv a c) =Acc a c holds. Hence it follows from P a (prog a (inv a c)) that P a c holds.
In addition, we show with function extensionality that for any a : V there is a unique proof

of Acc a, that is,
(a : V)→ Σ(t:Acc a)((s : Acc a)→ t =Acc a s)

holds. We formalised our result in Agda by postulating function extensionality [16].

Future Work Aczel’s interpretation of CZF in MLTT was refined in Homotopy type theory
(HoTT) [17]. The cumulative hierarchy V of sets is defined not as a W-type but as a higher
inductive type, where the equivalence relation

.
= on V is replaced with the identity type =V and

V has the path constructor for =V. Other interpretations of CZF in HoTT were investigated
in, e.g., [10, 11, 8]. In the literature of HoTT the accessibility in general, namely, the accessible
part of a binary relation is defined by indexed inductive definition [17, 6]. A future research
direction is to examine whether its special case Acc is derivable in HoTT by adapting our
argument above: we will examine whether the constructor and eliminator of Acc are derivable
under some interpretation of CZF in HoTT, which can prove function extensionality by means
of the univalence axiom.
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