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In the context of univalent foundations [17], injective types were introduced by the second
author in [6]. The interest in injectivity originated in its use to construct infinite searchable
types [5], but the topic turned out to have a rather rich theory on its own. We present new
examples and counter-examples of injective types from our Agda development [7].

Definition 1. A type D is (algebraically) injective if it has the property that for every
embedding j : X — Y, any map f : X — D into D has a designated extension f/j. By
extension, we mean that the diagram below commutes, i.e. f/joj = f holds.

j (1)
\,4 k// ;
! D f/i

We recall that an embedding is a map whose fibers are propositions. The algebraicity here
refers to the fact that we ask for a specified extension, i.e. formulated with a ¥-type, rather than
the existence of some unspecified extension, i.e. formulated with 3, the propositional truncation
of a Y-type. Here we consider only algebraically injective types and abuse terminology by
dropping the adjective.

With classical logic, i.e. in the presence of excluded middle, the injective types are precisely
the pointed types. In fact, this characterization is equivalent to excluded middle. In constructive
univalent foundations, the situation is more interesting, as we show in this abstract.

Injectivity and universe levels. The notion of injectivity is universe dependent [6], in the
absence of propositional resizing, so that we are led, for universes U, V and W, to consider types
D : W that are (U, V)-injective in the sense that the types X and Y in (f) are restricted to live
in U and V, respectively. The following theorem says that there are no non-trivial small injective
types in general,! and is comparable to Corollary 10 of [1] which says that in the predicative set
theory CZF it is consistent that the only injective sets (as opposed to classes) are singletons.

Theorem 2. If there is a (U,U)-injective type in U with two distinct points, then the type
Q. =3 P:U,isprop(P) x (-—P — P) of =—-stable propositions in ¢, whose native universe
is U™, is equivalent to a type in U.

For simplicity, we will not pay too much attention to the universe levels here, but we stress
that they are important and that our Agda development [7] in TypeTopology rigorously keeps
track of them.

1The conclusion of Theorem 2, the resizing of -, is not provable in univalent foundations, as observed
by Andrew Swan. Given a small copy of -, we can interpret classical second order arithmetic via -—-stable
propositions and subsets, but the consistency strength of univalent foundations is below that of classical second
order arithmetic by [14, Corollary 6.7].
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Examples. The following is a non-exhaustive list of examples of injective types and extends [6]:

1. Any univalent type universe Y. Indeed, given j : X — Y and a type family f: X — U,
we can define (f/j)y := X (2, —):j Y(y), fz where j7(y) := Y a: X, fo =y denotes
the fiber of j at y. We note that defining an extension using II instead of ¥ also works.

The type of propositions €%, in . Similar to above, we have extensions via IT and 3.
The type of ordinals in U/, with extensions given by suprema [2, Thm. 5.8] for instance.
The type of iterative (multi)sets [9, 10] in Y.

The types of (small) co-magmas, monoids, and groups.

The type LX :=X P : Oy, (P — X) of partial elements [4] of any type X : U.

A T

The underlying type of any sup-complete poset, and more generally, of any pointed dcpo.

Examples 1, 2 and 6 were already present in [6], as is the fact that injective types are closed
under retracts and dependent products. We now also have a sufficient criterion for a X-type
over an injective type to be injective which accounts for the examples of Item 5. For subtypes of
injective types there is a necessary and sufficient condition:

Theorem 3. A subtype X d: D, Pd of an injective type D is injective if and only if we have
f D — D such that for all d : D, the property P holds for fd, and Pd implies fd = d.

In particular, any reflective subuniverse [16] is injective, which also follows from [6, Theorem 24].

Counter-examples. The only type that is provably not injective is the empty type, because
classically any pointed type is injective. But there are plenty of examples of types that cannot
be shown to be injective in constructive mathematics, because their injectivity would imply a
constructive taboo: a statement that is not constructively provable and is false in some models.

The relevant taboo in this case is weak excluded middle which says that for any proposition
P either =P or —=—P holds, and which is equivalent to De Morgan’s law [11, Prop. D4.6.2].

Theorem 4. If any of the following types is injective, then weak excluded middle holds.

The type of booleans 2 := 1 + 1. (This counter-example already appears in loc. cit.)
The simple types, obtained from N by iterating function types.

The type of Dedekind reals.

The type of conatural [3] numbers Ny, ;=Y : N — 2 (IIi: N,a; > aq1).

AN R .

More generally, any type with an apartness relation and two points apart.

Counter-example 5 implies that none of the examples of injective types given above have
interesting apartness relations. In particular, this result may be seen as an internal version of
Kocsis’ result [12, Corollary 5.7] that MLTT does not define any non-trivial apartness relation
on a universe (in loc. cit. this fact is obtained by a parametricity argument).

In computation, it is important to identify decidable properties of types. The following
Rice-like [15] theorem says that injective types have no non-trivial decidable properties.

Theorem 5. If an injective type has a decomposition, then weak excluded middle holds.
Here, a decomposition of a type X is defined to be a function f : X — 2 such that we have
zo: X and x1 : X with fzg =0and fx, = 1.
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While the type ¥ X : U, X of pointed types and the type ¥ X : U, ~—X of non-empty types

are both injective, the type of inhabited types is not in general.

Proposition 6. The type ¥ X : U, || X|| of inhabited types is injective if and only if all proposi-
tions are projective [13] (a weak choice principle that fails in some toposes [8]).

The above illustrates the constructive difference between the double negation and the

propositional truncation (which coincide if and only if excluded middle holds).
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