Y is not typable in AU

Herman Geuvers'?*and Joep Verkoelen

1 jCIS, Radboud University Nijmegen, The Netherlands
2 Technical University Eindhoven, The Netherlands

Abstract

The type theories AU and AU~ are known to be logically inconsistent. For AU, this is
known as Girard’s paradox [7]; for AU~ the inconsistency was proved by Coquand [3]. It
is also known that the inconsistency gives rise to a so called looping combinator: a family
of terms L, such that L, f is convertible with f(Ln+1f). It is un-known whether a fixed
point combinator exists in these systems. Hurkens [9] has given a simpler version of the
paradox in AU, giving rise to an actual proof term that can be analyzed, and which is
proven to be a looping combinator and not a fixed point combinator in [2]. However, the
underlying untyped term is a real fixed point combinator.

Here we analyze the possibility of typing a fixed point combinator in AU and we prove
that the Curry and Turing fixed point combinators Y and © cannot be typed in AU, and
the same holds for 2.

Although systems like Ax and AU are logically inconsistent, computationally they are still
interesting, because not all terms are -convertible. The first to study the computational power
of these inconsistent systems was Howe [8], going back to earlier (unpublished) work of [10].
Howe coined the terminology looping combinator for a family of terms {L, },en such that
L, f =p f(Lnyt1 f), and he showed that a looping combinator can be defined in Ax. Using a
looping combinator, it can be shown that the equational theory (the theory of S-conversion) is
undecidable and that the theory is Turing complete.

When Girard [7] proved the paradox in 1972, he did that for AU, an extension of higher order
logic with polymorphic domains and quantification over all domains. This system allows less
type constructions than Ax, but that has the advantage that it is somewhat easier to see what
is going on. By that time, it was unclear whether AU ~: higher order logic with polymorphic
domains (but no quantification over all domains) was inconsistent.

In 1994, Coquand [3] proved that AU~ is inconsistent as well, by encoding Reynolds’ result
[11], stating that no set-theoretic model of polymorphic lambda calculus exists, into AU ~. Later,
Hurkens gave a considerably shorter proof [9], which is based on interpreting Russell’s paradox in
AU ™. Recently, Coquand [4] has given an adapted presentation of Hurkens’ proof, emphasizing
the relation with Reynolds’ result.

Here we analyze the paradox in AU syntactically. (For a semantic analysis, relating the
paradox to models of higher order logic, see [6].) The main question we are interested in is
whether there exists a fixed-point combinator in A\U. We give a partial answer by showing that
the well-known Turing and Curry fixed-point combinators (0 and Y') cannot be typed in AU.

We assume AU to be known (see [1, 5]), so we don’t give the typing rules but we just emphasize
that we divide the set of variables V into three disjoint sets var®, var® and var* for which we
use standard characters: var® = {ky, ko, ks,...}, var® = {a, 3,7, ...}, var* = {x,5,2,...}. So
a variable that lives in a type A : % is typically z, y or z etcetera. We also define the syntactical
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categories Kinds (K1, Ks, K3), Constructors (P,Q, R) and Proof terms (t,p, q) as follows.
Kinds K == k| *|K—K|Ik:0.K

Constructors P == «a|Aa:K.P|PP|P — P| \k:0.P | PK|la:K.P

Proof terms ¢ x| Ax:Pt | tt] Aa: K.t | tP] Ak:O.p | pK
An important property of AU (which is not the case in Ax) is that

Lemma 1. All kinds and constructors of AU are strongly normalizing.

Therefore, type checking is decidable in AU. For t a proof term of AU, we define the erasure
of t, denoted by |t|, as follows, by induction on the construction of proof terms.

|| = =z

|[Az:Pp| = Az.|p| if P € Constructors lpgl = Ipllg| if p,q € Proof terms
[Aa:K.p| = |p| if K € Kinds IpP| = |p| if P € Constructors
[Ak:Op| = |p| IpK| = |p| if K € Kinds

We say that an untyped lambda term M is typable in AU iff there exist I',¢, A such that
IF'Ft:A:*and |t| =M. We prove the following result

Proposition 1. The terms Q, Y and © are not typable in A\U.
This result comes as a corollary of a more general result:
Theorem 2. Double self-application is not possible in AU.
Here we mean with “double self-application” a term t : A : x such that |t| = (Az.N)(Ay.P) and

N contains a sub-term xx and P contains a sub-term yy.

The Theorem is proving by analyzing the so called parse tree of a type, following ideas from
[12]. The argument basically consists of two parts:

1. if ¢ contains a self-application, so [¢| contains a sub-term x x, then the type of x in ¢ is of
the form IIv': V.aT — ... with a € v

2. if |¢| = Ay.N where N contains yy, then the type of g is not of the II7 : V.aT — ... with
o€ .

From this the Theorem follows.

If we now look back at the looping combinator Ly that can be derived from the inconsistency
proof of Hurkens [9], and we erase all type information, we obtain the following term.

|Lil = L = Mf.(Az.z(Apg. f(gpq))x) (\y-yy)

In the untyped A-calculus, this is a fixed-point combinator and an interesting one, because it
contains no double self-application, as 2, Y and © do.
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