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Abstract

The type theories λU and λU− are known to be logically inconsistent. For λU , this is
known as Girard’s paradox [7]; for λU− the inconsistency was proved by Coquand [3]. It
is also known that the inconsistency gives rise to a so called looping combinator: a family
of terms Ln such that Lnf is convertible with f(Ln+1f). It is un-known whether a fixed
point combinator exists in these systems. Hurkens [9] has given a simpler version of the
paradox in λU−, giving rise to an actual proof term that can be analyzed, and which is
proven to be a looping combinator and not a fixed point combinator in [2]. However, the
underlying untyped term is a real fixed point combinator.

Here we analyze the possibility of typing a fixed point combinator in λU and we prove
that the Curry and Turing fixed point combinators Y and Θ cannot be typed in λU , and
the same holds for Ω.

Although systems like λ⋆ and λU are logically inconsistent, computationally they are still
interesting, because not all terms are β-convertible. The first to study the computational power
of these inconsistent systems was Howe [8], going back to earlier (unpublished) work of [10].
Howe coined the terminology looping combinator for a family of terms {Ln}n∈N such that
Ln f =β f(Ln+1 f), and he showed that a looping combinator can be defined in λ⋆. Using a
looping combinator, it can be shown that the equational theory (the theory of β-conversion) is
undecidable and that the theory is Turing complete.

When Girard [7] proved the paradox in 1972, he did that for λU , an extension of higher order
logic with polymorphic domains and quantification over all domains. This system allows less
type constructions than λ⋆, but that has the advantage that it is somewhat easier to see what
is going on. By that time, it was unclear whether λU−: higher order logic with polymorphic
domains (but no quantification over all domains) was inconsistent.

In 1994, Coquand [3] proved that λU− is inconsistent as well, by encoding Reynolds’ result
[11], stating that no set-theoretic model of polymorphic lambda calculus exists, into λU−. Later,
Hurkens gave a considerably shorter proof [9], which is based on interpreting Russell’s paradox in
λU−. Recently, Coquand [4] has given an adapted presentation of Hurkens’ proof, emphasizing
the relation with Reynolds’ result.

Here we analyze the paradox in λU syntactically. (For a semantic analysis, relating the
paradox to models of higher order logic, see [6].) The main question we are interested in is
whether there exists a fixed-point combinator in λU . We give a partial answer by showing that
the well-known Turing and Curry fixed-point combinators (Θ and Y ) cannot be typed in λU .

We assume λU to be known (see [1, 5]), so we don’t give the typing rules but we just emphasize
that we divide the set of variables V into three disjoint sets var△, var2 and var⋆ for which we
use standard characters: var△ = {k1, k2, k3, . . .}, var2 = {α, β, γ, . . .}, var⋆ = {x, y, z, . . .}. So
a variable that lives in a type A : ⋆ is typically x, y or z etcetera. We also define the syntactical
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categories Kinds (K1,K2,K3), Constructors (P,Q,R) and Proof terms (t, p, q) as follows.

Kinds K ::= k | ⋆ | K → K | Πk :2.K

Constructors P ::= α | λα :K.P | PP | P → P | λk :2.P | PK| Πα :K.P

Proof terms t ::= x | λx :P.t | tt| λα :K.t | tP | λk :2.p | pK

An important property of λU (which is not the case in λ⋆) is that

Lemma 1. All kinds and constructors of λU are strongly normalizing.

Therefore, type checking is decidable in λU . For t a proof term of λU , we define the erasure
of t, denoted by |t|, as follows, by induction on the construction of proof terms.

|x| = x
|λx :P.p| = λx.|p| if P ∈ Constructors |pq| = |p||q| if p, q ∈ Proof terms
|λα :K.p| = |p| if K ∈ Kinds |pP | = |p| if P ∈ Constructors
|λk :2.p| = |p| |pK| = |p| if K ∈ Kinds

We say that an untyped lambda term M is typable in λU iff there exist Γ, t, A such that
Γ ⊢ t : A : ⋆ and |t| = M . We prove the following result

Proposition 1. The terms Ω, Y and Θ are not typable in λU .

This result comes as a corollary of a more general result:

Theorem 2. Double self-application is not possible in λU .
Here we mean with “double self-application” a term t : A : ⋆ such that |t| = (λx.N)(λy.P ) and
N contains a sub-term xx and P contains a sub-term y y.

The Theorem is proving by analyzing the so called parse tree of a type, following ideas from
[12]. The argument basically consists of two parts:

1. if t contains a self-application, so |t| contains a sub-term xx, then the type of x in t is of

the form Πv⃗ : V⃗ .αT⃗ → . . . with α ∈ v⃗;

2. if |q| = λy.N where N contains y y, then the type of q is not of the Πv⃗ : V⃗ .αT⃗ → . . . with
α ∈ v⃗.

From this the Theorem follows.

If we now look back at the looping combinator L0 that can be derived from the inconsistency
proof of Hurkens [9], and we erase all type information, we obtain the following term.

|Li| = L = λf.(λx.x(λpq.f(qpq))x)(λy.yy)

In the untyped λ-calculus, this is a fixed-point combinator and an interesting one, because it
contains no double self-application, as Ω, Y and Θ do.
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