
Y is not typable in λU

Herman Geuvers12∗and Joep Verkoelen

1 iCIS, Radboud University Nijmegen, The Netherlands
2 Technical University Eindhoven, The Netherlands

Abstract

The type theories λU and λU− are known to be logically inconsistent. For λU , this is
known as Girard’s paradox [7]; for λU− the inconsistency was proved by Coquand [3]. It
is also known that the inconsistency gives rise to a so called looping combinator: a family
of terms Ln such that Lnf is convertible with f(Ln+1f). It is un-known whether a fixed
point combinator exists in these systems. Hurkens [9] has given a simpler version of the
paradox in λU−, giving rise to an actual proof term that can be analyzed, and which is
proven to be a looping combinator and not a fixed point combinator in [2]. However, the
underlying untyped term is a real fixed point combinator.

Here we analyze the possibility of typing a fixed point combinator in λU and we prove
that the Curry and Turing fixed point combinators Y and Θ cannot be typed in λU , and
the same holds for Ω.

Although systems like λ⋆ and λU are logically inconsistent, computationally they are still
interesting, because not all terms are β-convertible. The first to study the computational power
of these inconsistent systems was Howe [8], going back to earlier (unpublished) work of [10].
Howe coined the terminology looping combinator for a family of terms {Ln}n∈N such that
Ln f =β f(Ln+1 f), and he showed that a looping combinator can be defined in λ⋆. Using a
looping combinator, it can be shown that the equational theory (the theory of β-conversion) is
undecidable and that the theory is Turing complete.

When Girard [7] proved the paradox in 1972, he did that for λU , an extension of higher order
logic with polymorphic domains and quantification over all domains. This system allows less
type constructions than λ⋆, but that has the advantage that it is somewhat easier to see what
is going on. By that time, it was unclear whether λU−: higher order logic with polymorphic
domains (but no quantification over all domains) was inconsistent.

In 1994, Coquand [3] proved that λU− is inconsistent as well, by encoding Reynolds’ result
[11], stating that no set-theoretic model of polymorphic lambda calculus exists, into λU−. Later,
Hurkens gave a considerably shorter proof [9], which is based on interpreting Russell’s paradox in
λU−. Recently, Coquand [4] has given an adapted presentation of Hurkens’ proof, emphasizing
the relation with Reynolds’ result.

Here we analyze the paradox in λU syntactically. (For a semantic analysis, relating the
paradox to models of higher order logic, see [6].) The main question we are interested in is
whether there exists a fixed-point combinator in λU . We give a partial answer by showing that
the well-known Turing and Curry fixed-point combinators (Θ and Y) cannot be typed in λU .

We assume λU to be known (see [1, 5]), so we don’t give the typing rules but we just emphasize
that we divide the set of variables V into three disjoint sets var△, var2 and var⋆ for which we
use standard characters: var△ = {k1, k2, k3, . . .}, var2 = {α, β, γ, . . .}, var⋆ = {x, y, z, . . .}. So
a variable that lives in a type A : ⋆ is typically x, y or z etcetera. We also define the syntactical

∗herman@cs.ru.nl

Y is not typable in λU Geuvers, Verkoelen

categories Kinds (K1,K2,K3), Constructors (P,Q,R) and Proof terms (t, p, q) as follows.

Kinds K ::= k | ⋆ | K → K | Πk :2.K

Constructors P ::= α | λα :K.P | PP | P → P | λk :2.P | PK| Πα :K.P

Proof terms t ::= x | λx :P.t | tt| λα :K.t | tP | λk :2.p | pK

An important property of λU (which is not the case in λ⋆) is that

Lemma 1. All kinds and constructors of λU are strongly normalizing.

Therefore, type checking is decidable in λU . For t a proof term of λU , we define the erasure
of t, denoted by |t|, as follows, by induction on the construction of proof terms.

|x| = x
|λx :P.p| = λx.|p| if P ∈ Constructors |pq| = |p||q| if p, q ∈ Proof terms
|λα :K.p| = |p| if K ∈ Kinds |pP | = |p| if P ∈ Constructors
|λk :2.p| = |p| |pK| = |p| if K ∈ Kinds

We say that an untyped lambda term M is typable in λU iff there exist Γ, t, A such that
Γ ⊢ t : A : ⋆ and |t| = M . We prove the following result

Proposition 1. The terms Ω, Y and Θ are not typable in λU .

This result comes as a corollary of a more general result:

Theorem 2. Double self-application is not possible in λU .
Here we mean with “double self-application” a term t : A : ⋆ such that |t| = (λx.N)(λy.P) and
N contains a sub-term xx and P contains a sub-term y y.

The Theorem is proving by analyzing the so called parse tree of a type, following ideas from
[12]. The argument basically consists of two parts:

1. if t contains a self-application, so |t| contains a sub-term xx, then the type of x in t is of

the form Πv⃗ : V⃗ .αT⃗ → . . . with α ∈ v⃗;

2. if |q| = λy.N where N contains y y, then the type of q is not of the Πv⃗ : V⃗ .αT⃗ → . . . with
α ∈ v⃗.

From this the Theorem follows.

If we now look back at the looping combinator L0 that can be derived from the inconsistency
proof of Hurkens [9], and we erase all type information, we obtain the following term.

|Li| = L = λf.(λx.x(λpq.f(qpq))x)(λy.yy)

In the untyped λ-calculus, this is a fixed-point combinator and an interesting one, because it
contains no double self-application, as Ω, Y and Θ do.

2

Y is not typable in λU Geuvers, Verkoelen

References

[1] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum,
editors, Handbook of Logic in Computer Science, pages 117–309. Oxford University Press, 1992.

[2] G. Barthe and Th. Coquand. Remarks on the equational theory of non-normalizing pure type
systems. Journal of Functional Programming, 16(2):137–155, 2006.

[3] Th. Coquand. A new paradox in type theory. In Logic, Methodology and Philosophy of Science IX:
Proc. Ninth Int. Congress of Logic, Methodology, and Philosophy of Science, pages 7–14. Elsevier,
1994.

[4] Thierry Coquand. A variation of Reynolds-Hurkens paradox. In Venanzio Capretta, Robbert
Krebbers, and Freek Wiedijk, editors, Logics and Type Systems in Theory and Practice - Essays
Dedicated to Herman Geuvers on The Occasion of His 60th Birthday, volume 14560 of Lecture
Notes in Computer Science, pages 111–117. Springer, 2024.

[5] H. Geuvers. Logics and Type Systems. PhD thesis, Radboud University, Nijmegen, 1993.

[6] H. Geuvers. (In)consistency of extensions of higher order logic and type theory. In Th. Altenkirch
and C. McBride, editors, Types for Proofs and Programs Int. Workshop, Nottingham, UK, April
18-21, 2006, Revised Selected Papers, volume 4502 of LNCS, pages 140–159. Springer, 2007.

[7] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithmétique d’ordre
supérieur. PhD thesis, Université Paris VII, 1972.

[8] D. J. Howe. The computational behaviour of Girard’s paradox. In Proceedings of the 2nd Symposium
on Logic in Computer Science, pages 205–214. IEEE, 1987.

[9] A.J.C. Hurkens. A simplification of Girard’s paradox. In TLCA ’95: Proceedings of the 2nd Int.
Conf. on Typed Lambda Calculi and Applications, pages 266–278, London, UK, 1995. Springer.

[10] M.B. Reinhold. Typechecking is undecidable when ’type’ is a type, 1986.

[11] J.C. Reynolds. Polymorphism is not set-theoretic. In G. Kahn, D.B. MacQueen, and G.D. Plotkin,
editors, Semantics of Data Types, International Symposium, Sophia-Antipolis, France, June 27-29,
1984, Proceedings, volume 173 of Lecture Notes in Computer Science, pages 145–156. Springer,
1984.

[12] P. Urzyczyn. Type reconstruction in Fω. Mathematical Structures in Comp. Sci., 7(4):329–358,
1997.

3

