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1 Introduction

Finding solutions to so-called recursive domain equations [11] is a well-known, important prob-
lem in the study of programs and programming languages. Mathematically speaking, the
problem is finding a fixed point (up to isomorphism) of a suitable endo-functor F : C → C on a
suitable category C, i.e., an object X of C such that F (X) ≃ X [9, 8, 11, 14, 1, 4]. A particularly
useful instance, inspired by the step-indexing technique, is where the functor is over (a subcat-
egory of) the category of presheaves over the ordinal ω and the functors are locally-contractive,
also known as guarded functors [3]. This corresponds to step-indexing over natural numbers.
However, for certain problems, e.g., when dealing with infinite non-determinism, one needs to
employ trans-finite step-indexing, i.e., consider presheaf categories over higher ordinals [2, 5].
Prior work on trans-finite step-indexing either only considers a very narrow class of functors
over a particularly restricted subcategory of presheaves over higher ordinals [12], or treats the
problem very generally working with sheaves over an arbitrary complete Heyting algebra with
a well-founded basis [3]. In this work we present a solution to the guarded domain equations
problem over all so-called guarded functors over the category of presheaves over ordinal num-
bers, as well as its mechanization in the Rocq prover. This can be seen as a simplification of
the work of Birkedal et al. [3] from the setting of the category of sheaves to the setting of the
category of presheaves which is more amenable to mechanization using proof assistants. Our
Rocq mechanization [13] can be found at: https://github.com/logsem/synthetic_domains.

2 Presheaves Over All Ordinals

In this work we talk about step-indexing over (all) ordinals, e.g., we speak of sheaves or
presheaves over Ord, the set of all ordinals (which we also consider to be a preorder cate-
gory under the usual order). This is to be understood as the set of all ordinals definable in a
certain Grothendieck universe. (In Rocq, the type Ord is a universe polymorphic definition
corresponding to the type of all ordinals in the universe.)

An important endo-functor on PSh(Ord) that plays an important role in our development
is the so-called later functor (▶ : PSh(Ord) → PSh(Ord)):

▶F (α) := lim
β≺α

F (β) (▶F )β⪯α := lim
γ≺β

Π▶F (α)
γ

The object map of ▶, at each stage, takes the limit (in Set) of the diagram induced by the
object (presheaf) it is mapping at all smaller stages. In particular, ▶F (0) is always the terminal
(singleton) set, and ▶F (α+) ≃ F (α). The morphism map of the functor ▶, (▶F )β⪯α is defined

as the amalgamation of projections Π
▶F (α)
γ : ▶F (α) → F (γ) of the limit that is (▶F )(α).

There is also an important natural transformation Next : idPSh(Ord) → ▶ associated with ▶.

https://github.com/logsem/synthetic_domains
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We say a morphism in PSh(Ord), i.e., a natural transformation η : F → G, is contractive, if
it factors through Next, i.e., η = η′ ◦NextF ; we call η′ the witness of contractivity. Contractive
morphisms are closed under composition with any other (not necessarily contractive) natural
transformation. Importantly, contractive natural transformations have unique fixed points; a
natural transformation ξ : 1 → A is a fixed point of a contractive morphism η : A → A if
η ◦ ξ = ξ.

3 Locally Contractive Functors and Solutions

Definition (Locally Contractive Functors). Let C and D be two PSh(Ord)-enriched categories.
We write EhomC

A,B for the object of PSh(Ord) representing the collection of morphisms from A

to B in a category C, and we write EhmF
A,B : EhomC

A,B → EhomD
F (A), F (B) for the morphism of PSh(Ord)

representing the internal action of an enriched functor F on morphisms. We say a PSh(Ord)-
enriched functor F : C → D is locally contractive if the internal action morphisms of F , EhmF

A,B ,

are contractive with the witness of contractivity being morphisms E▶hmF
A,B : ▶EhomC

A,B → EhomD
F (A), F (B).

Furthermore, expressed in terms of equality of morphisms in PSh(Ord), the morphisms E▶hmF
A,B

must preserve identity and composition.

Importantly, the functor ▶ itself (under self-enrichment of PSh(Ord)) is locally contractive,
and locally contractive functors are closed under composition with arbitrary enriched functors.

Theorem. Any locally contractive functor F : C → C has a unique (up to isomorphism) solution
X for which F (X) ≃ X.

Note how each solution F (X) ≃ X gives rise to an F -algebra structure on X. The proof of
uniqueness of the solution essentially shows that an object is a solution if and only if it is the
initial F -algebra — the F -algebra morphism out of this initial F -algebra is constructed as the
unique fixed point of the internal action of the functor F on morphisms, which is contractive
since F is locally contractive. It is also for this reason that our construction of the solution is
essentially constructing an F -algebra whose underlying map is an isomorphism. Technically,
this construction consists of iteratively (by transfinite induction) constructing ordinal-shaped
diagrams of F -algebras, taking their limit, and applying F to the constructed limit.

Apart from working with the category of F -algebras as opposed to working directly in C,
our solution construction differs from that of Birkedal et al. [3] in how we treat zero and limit
ordinals. Working with sheaves, Birkedal et al. [3] at zero and limit ordinals simply take the
limit of the construction at stages below. By contrast, we apply F to the limit at every single
stage and not just at successor ordinals. (A similar difference also appears in our construction of
fixed points of contractive morphisms as defined above.) Another way to look at this difference
is if we look at the sequence of objects constructed in these two approaches (in our case the
carrier objects of the algebras we compute). Up to isomorphism, what we compute is the
sequence X while Birkedal et al. [3] compute the sequence Y :

X0 := F (1); X1 := F (F (1)); X2 := F (F (F (1))); · · · Xω := F ( lim
α≺ω

Xα); Xω+ := F (Xω); · · ·

Y0 := 1; Y1 := F (1); Y2 := F (F (1)); · · · Yω := lim
α≺ω

Yα; Yω+ := F (Yω); · · ·

4 Related Work

The most closely related works to us are Rocq mechanizations of the domain equation solver
of the ModuRes library [10], the domain equation solver of the Iris program logic [6] which
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is a nicer reimplementation of the domain equation solver of the ModuRes library, and the
domain equation solver of transfinite Iris [12]. (In fact, for our mechanization we have used the
step-indexing development of Spies et al. [12] who use the mechanization of ordinal numbers
by Kirst et al. [7].) The former two mechanizations work with the category of complete ordered
family of equivalences (COFEs), a representation of the category of complete bisected bounded
ultra metric spaces (CBUlt) [4] that is particularly amenable to mechanizations [10]. These
only support step-indexing up to ω. Transfinite Iris, inspired by Birkedal et al. [3], extends the
definition of OFEs (COFEs without completeness requirement) and COFEs to higher ordinals.
However, Transfinite Iris, unlike the ModuRes library and Iris, only solves domain equations
for functors of the form OFEop ×OFE → COFE and not COFEop × COFE → COFE.
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