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Term expansion was first defined in [8] to relate terms typed in an intersection type system
with linear terms. Recently, new applications of term expansion include the relation with other
substructural type systems (relevant and ordered type systems) [2] and quantitative types [3].
Here we define term expansion for a calculus with explicit substitutions and apply it to relate
a λ-calculus with explicit substitutions [9] with a resource calculus [5], where the argument of
a function is a bag of resources, that is, a multiset of terms.

1 Explicit substitutions

Although the λ-calculus [4, 6] is a convenient model for computational functions, it lacks
the means for observing operational properties of the execution of such algorithms, mainly due
to its implicit β-contraction, which is a meta-operation. There was a necessity to explicitly
deal with substitutions, in order to bridge the gap between theory and implementation, allow
efficient reduction in implementations, and avoid variable capture and scope issues [1].

Here we will be using a modification of the explicit substitution calculus presented in [9],
the λxgc-calculus, which is an adaptation of λσ [1], that retains variable names instead of using
indices à la Bruijn [7], and preserves strong-normalisation.

Definition 1 (λx-preterms). The λx-preterms are the extension of the λ-preterms defined
inductively by

M ::= x | λx.M | MN | M < x := N >

In this calculus, explicit substitution is given highest precedence. It also has explicit garbage
collection [10], which is useful and easy to specify using names.

Definition 2 (Evaluation in the λxgc-calculus). The reduction is defined as −−−→
bxgc

=−→
b

∪ −→
x

∪ −→
gc

.

(λx.M)N −→
b

M < x := N >

x < x := N >−→
xv

N

x < y := N >−−−→
xvgc

x if x ̸≡ y

M < x := N >−→
gc

M if x /∈ fv(M)

(M1M2) < x := N >−−→
xap

M1 < x := N > M2 < x := N >

M −−−→
bxgc

M ′

MN −−−→
bxgc

M ′N

(λx.M)N2 −−−→
bxgc

M ′ if y /∈ fv(N2)

((λx.M) < y := N1 >)N2 −−−→
bxgc

M ′ < y := N1 >

Example 1. Consider the λx-term (λx.xx)I, where I ≡ λz.z.

(λx.xx)I −−−→
bxgc

(xx) < x := I >−−−→
bxgc

x < x := I > x < x := I >−−−→
bxgc

II −−−→
bxgc

z < z := I >

−−−→
bxgc

I
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2 Term Expansion

We now relate expansion with a resource calculus [5], where the standard λ-calculus ap-
plication MN , is denoted by MN∞, to indicate that the argument N is always available for
function M .

Our main focus now is to develop a relation between terms typable by idempotent inter-
section types and a subset of Boudol’s language, which we will refer to as Λ∞, allowing us to
express only multiplicities ∞, hence each bag of resources is used without restriction.

Definition 3 (Boudol’s terms). The following terms are the syntax of Boudol’s λ-calculus with
multiplicities.

M ::= x | λx.M | (MP ) | (M < P/x >) terms
P ::= 1 | M | (P | P ) | M∞ bags of terms
V ::= λx.M | V < P/x > values

Definition 4 (Expansion). Given a pair M : σ, where M is a λ-term and σ an intersection
type, and a term N , we define a relation E(M : σ) ◁ N , which we call expansion:

E(x : τ) ◁ x
E(λx.M : τ1 ∩ · · · ∩ τn → σ) ◁ λx.M∗ if x ∈ fv(M) and E(M : σ) ◁ M∗

E(λx.M : τ → σ) ◁ λx.M∗ if x /∈ fv(M) and E(M : σ) ◁ M∗

E(MN : σ) ◁ (M∗(Pm1
1 | · · · | Pmk

k )) if for some k > 0 and τ1 . . . τk such
that E(M : τ1 ∩ · · · ∩ τk → σ) ◁ M∗

and E(N : τi) ◁ Pi
mi for 1 ≤ i ≤ k

E(M < x := N >: σ) ◁ (M∗ < (Pm1
1 | · · · | Pmk

k )/x >) if for some k > 0 and τ1 . . . τk such
that E(M : τ1 ∩ · · · ∩ τk → σ) ◁ M∗

and E(N : τi) ◁ Pi
mi for 1 ≤ i ≤ k

Since we are working with Λ∞, we have that for some k > 0 and 1 ≤ i ≤ k, mi = ∞.

Theorem 1 (Expansion and Multiplicities). Given a λx-term M and a type σ, such that
E(M : σ) ◁ M∗, if M −−−→

bxgc
→ V1 then M∗ ↠B V2 and E(V1 : σ) ◁ V2.

This theorem is proved by induction on the definition of expansion, and it shows that, if
we evaluate a λx-term until it reaches a value, then we are able to expand that initial term,
evaluate it in Boudol’s system and its result is an expansion of the value obtained in the λx
evaluation.

Example 2. Using the term in Example 1, we have

E((λx.xx)I : σ) ◁ ((λx.(xx∞))I∞)

because E(λx.xx : ((σ → σ) ∩ σ) → σ) ◁ λx.(xx∞) and E(I : (σ → σ) ∩ σ) ◁ I.

((λx.(xx∞))I∞) → (xx∞) < I∞/x > → (Ix∞) < I∞/x > → z < x∞/z >< I∞/x >
→ x < x∞/z >< I∞/x >
→ I < x∞/z >< I∞/x > ≡ I

and E(I : σ) ◁ I.
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3 Conclusion and Future Work

Here we have proved that there exists a relation between ACI-intersection types and a
resource calculus that deals with multiplicities m = ∞ (infinitely available resources).

This serves as preliminary work towards proving that there exists a relation between AC-
intersection types and a resource calculus of finite multiplicities. We also wish to look into an
extension of this calculus that deals with α-conversion.
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