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Abstract

While tensors are an important computational device, for example in machine learn-
ing [3] or physics [4], it seems type theory has had little to say about them. This work in
progress is predicated on two principles widely accepted within the Types community: i)
compositionality is a key approach enabling the construction of complex structures from
simpler, and hence easier to define, structures; and ii) containers have an extremely rich
compositional algebra [1]. Given these observations, one might wonder if containers can be
used to develop a compositional approach to tensors and that is exactly what this abstract
does.

1 Introduction

Tensors are actively used in many unrelated areas of computer science and mathematics. There
are at least two ways to understand them. On the one hand, they are just multi-dimensional
arrays, and this is the angle taken in array languages such as APL. On the other hand, tensors
generalise matrices in the following way. If matrix is a normal form for linear functions, where
matrix multiplication is function composition, tensors are normal forms for multi-linear maps
from sets of vector and co-vector spaces into the underlying field. In both cases, tensors and
their operations expose a lot of structure that is interesting to study in the context of type
theory.

Despite their importance, tensor algebra tends to be seen as a tool with fairly concrete
representation based on the manipulation of lists of natural number-valued indices — structure-
preserving tensor operations are thus formalised via list-theoretic computation. While good for
fast implementations, this approach suffers from a lack of high-level abstraction common to all
modern development in type theory. As a result, proving properties of tensor inside systems
such as Agda or Coq is rather cumbersome. We developed a container-based approach to tensors
where properties of tensor operations are mapped onto well-known type-theoretic constructions.
This is still a work in progress, but the clean and general treatment of, for example, reshaping
via container morphisms, makes us confident this approach has something to bring.

Containers Containers [1] (also known as polynomial functors [2]) were introduced to study
concrete data types. This is a powerful construction as it captures the notion of strictly positive
data types, and it is closed under operations such as disjoint sum, product and many others. A
container is a pair (S, P ) where S : Set and P : S → Set. The set S is called the set of shapes
and can be thought of as the constructors of a data type. Each constructor/shape s ∈ S has
an arity P s which we call the positions of that shape. A container (S, P ) is a presentation of
the functor [[S, P ]] : Set → Set defined by

[[S, P ]] X = (Σs : S)P s → X

Elements in [[S, P ]] X intuitively consist of the choice of a constructor and an assignment of
a piece of data (here, X) to every position of that constructor. The fundamental theorem of
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containers is a classification of the natural transformations between those: a natural transfor-
mation f : [[S, P ]] → [[Q,R]] is uniquely given by: i) a function on shapes u : S → Q; and
ii) a contravariant re-indexing t : (Πs : S) (R (u s) → P s). Such pairs are called container
morphisms and form a category Cont of containers.

Containers are known to support a large number of constructions making them good for
compositional modelling. We use the coproduct which is defined as follows. Let (S, P ) and
(S′, P ′) be containers. Their coproduct has shapes S + S′ with positions the cotuple [P, P ′].

2 From Containers to Tensors

We change the usual perspective on containers by writing (A, I) to reflect i) A : Set will
correspond to the set of axes (or dimensions) of a tensor; and ii) I : A → Set assigns to a
specific axis a : A, a set of indexes I a on that axis. Consider a traditional two-dimensional
(n × m)-matrix which can be given as A = 2, I (inl ∗) = Fin n and I (inr ∗) = Fin m. With
A : Set, there is no order on axes and hence we don’t need the complication of re-ordering axes.
Note that to get (n×m) matrices, the usual interpretation of containers needs to be changed:

[[A, I]]Π X = (Π A I) → X

Note that [[−]]Π : Cont → [Set,Set] is very different from the usual container interpretation.
It is functorial and indeed [[−]]Π = Y ◦ Π where Y is the Yoneda embedding. While [[−]]Π
does not have the full range of compositional operators supported by [[−]], we do have: i)
[[M ]]Π ◦ [[N ]]Π = [[M + N ]]Π; and ii) [[M ]]Π X × [[N ]]Π Y → [[M ]]Π (X × Y ). These properties
give rise to the pair, nest/unnest,map combinators:

pair : [[M ]]Π X → [[M ]]Π Y → [[M ]]Π (X × Y )

nest : [[M +M ′]]Π X ∼= [[M ]]Π ([[M ′]]Π X) : unnest map : (X → Y ) → [[M ]]Π X → [[M ]]Π Y

Reshaping is an important operation in array languages. Reshaping turns structural changes
in shapes into actions on arrays, and it can be used to guide recursive traversals through array
elements [5]. For tensors, reshaping can be given by container morphism and their action is
defined as follows:

reshape : Cont(M,M ′) → [[M ]]Π X → [[M ′]]Π X

Tensor contraction is one of the key operation in tensor calculus, and we can define this as
follows:

matmul : [[M1 +M2]]Π X → [[M2 +M3]]Π X → [[M1 +M3]]Π X

under the assumption that M2 is finite and X is a ring. This operation also gives rise to the
category of Tensors where objects are containers, morphisms from s to p are [[s + p]]Π X, and
composition is given by matmul. Note that under this interpretation [[s + p]]Π X is a tensor
of s co-vectors and p (contravariant) vectors. Empty container 0 and the singleton container
1 give rise to singleton tensors which are usually referred as scalars. Any [[s]]Π X can be
turned into a “column vector” [[s + 1]]Π X or a “row vector” [[1 + s]]Π X. Here distinction
between vectors and co-vectors is not as strong as in the actual tensor calculus, but we have
the structure to make it precise. Our work-in-progress formalisation can be found at https:
//github.com/ashinkarov/2025-types.
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