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Abstract

This extended abstract provides an overview of a long-term collaboration aimed at ex-
tending the Curry-Howard-Lambek correspondence to the realm of quantum computation.
I will introduce the Lambda-S calculus, a (partial) dual to intuitionistic linear logic whose
proof terms serve as a foundation for a quantum programming language. Additionally,
I will discuss the LS calculus, a proof language for intuitionistic linear logic, which also
enables the construction of quantum programming languages. These frameworks offer a
logical and computational foundation for reasoning about quantum programs and provide
a glimpse into the structure of a potential quantum logic as the dual of linear logic.

Introduction. Quantum logic is a formal system inspired by the structure of quantum theory,
originally developed by Garrett Birkhoff and John von Neumann [BvN36]. Unlike classical
logic, which is based on Boolean algebra, quantum logic weakens the distributive law, leading
to an orthocomplemented lattice structure. This formulation aligns with the mathematical
properties of quantum mechanics, where propositions correspond to projections on a Hilbert
space. However, while quantum logic has been explored as a foundational system for reasoning
about quantum mechanics, its connection to computation has been less explored. Indeed, the
connection between intuitionistic logic, typed lambda calculus, and Cartesian closed categories
has been a fruitful area of research, with the Curry-Howard-Lambek correspondence [SU06,
Cro93] providing a deep connection between these areas. If we are to extend this correspondence
to quantum computation, we need to start from a logical foundation that captures the structure
of quantum computation. In this extended abstract, I will provide an overview of a research
program aimed at developing a computational quantum logic, which will serve as a foundation
for quantum programming languages. This program is based on two main frameworks: the
Lambda-S calculus, which is an extension of the lambda calculus to quantum computing, and
the LS calculus, which is a proof language for intuitionistic linear logic whose proof terms can
be used to construct quantum programs. The idea was to start from computing to logic (the
Lambda-S calculus), and then from logic to computing (the LS calculus), in order to meet in
the middle.

The Lambda-S Calculus. From Computing to Logic. Lambda-S [DCDR19] and
Lambda-S1 [DCGMV19] are quantum lambda calculi designed to handle quantum superpo-
sitions and control while preserving computational properties such as strong normalization
and subject reduction. Both calculi extend the lambda calculus with algebraic linearity and
type-based constraints to enforce quantum mechanics principles, particularly the no-cloning
theorem.

Lambda-S is an extension of simply typed lambda calculus with linear combinations of terms,
it incorporates a type constructor S(A) where a simple type A denotes a set of basis vectors
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(terms) and S(A) its span. This system ensures that terms in A are duplicable, whereas terms
in S(A) are not, reflecting the impossibility of cloning unknown quantum states. Lambda-S
has been given a categorical semantics through an adjunction between Cartesian and additive
symmetric monoidal categories, where S is a functor transforming sets into vector spaces, and
its adjoint forgets the vectorial structure [DCM23,DCM20].

Lambda-S1 extends Lambda-S by enforcing norm-preserving constraints on superpositions,
making it a stricter model suitable for representing unitary transformations explicitly. It has
been obtained via a realizability model in [DCGMV19]. The categorical semantics of Lambda-
S1 [DCM22] is structured around adjunctions but diverges from Lambda-S by ensuring that
all terms maintain a unitary norm, addressing the long-standing issue of preserving quantum
unitarity in quantum control lambda calculi.

Both calculi serve as foundations for quantum programming languages and categorical mod-
els of quantum computation, bridging classical and quantum computational paradigms through
rigorous mathematical structures.

One of the most notable results of this side of the research program, is the fact that we proved
the model of Lambda-S to be a (partial) dual of known models for intuitionistic linear logic
(ILL). Partial, because it favors a computational basis, but some preliminary results suggest
that it can be extended to a proper dual [Mon25]. Usually, ILL is interpreted in a monoidal
closed category, using an adjunction with a Cartesian closed category to interpret duplicable
data. Lambda-S, on the other hand, is interpreted in a Cartesian closed category, using the
same adjunction, but the other way around, to interpret non-duplicable data. This duality
is a strong indication that the structure of quantum computation is the dual of linear logic,
and that the Curry-Howard-Lambek correspondence can be extended to quantum computation,
with this linear logic dual as the logical side and Lambda-S as the computational side.

The LS Calculus. From Logic to Computing. The LS calculus extends intuitionistic
multiplicative additive linear logic (IMALL) with algebraic structures, incorporating sum and
scalar multiplication within proof terms. It builds on the ⊙-calculus [DCD23], which intro-
duced an algebraic connective for quantum superpositions, and refines this idea within a fully
linear framework [DCD24]. In a recent draft, we replace the ⊙ connective with an alterna-
tive rule for disjunction introduction, enabling a structured representation of the quantum
measurement [DCD25]. Its categorical semantics formalizes this approach, aligning it with
monoidal structures that preserve linearity [DCM24]. Moreover, the calculus has been ex-
tended [DCDIM24] with !, that is, from IMALL to ILL, and polymorphism, ensuring expressive
power suitable for quantum programming languages.

The LS calculus provides a logical foundation for quantum programming languages, enabling
the construction of quantum circuits and algorithms through proof terms. Its algebraic structure
aligns with quantum mechanics principles, allowing for a direct representation of quantum
superpositions and measurements. The calculus serves as a bridge between linear logic and
quantum computation, providing a formal framework for reasoning about quantum programs.

The fact that both languages, Lambda-S and LS , use the same adjunction

Lambda-S LS

(S,×, I) ⊥ (V,⊗, 1)

(F,m)

(G,n)

where S is a Cartesian closed category, V is a monoidal closed category, but with Lambda-S
being interpreted in S, using the monad GF to interpret the non-duplicable terms, and LS
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being interpreted in V, using the comonad FG to interpret the duplicable terms, is a strong
indication that the structure of quantum computation can be seen as the dual of linear logic,
and that the Curry-Howard-Lambek correspondence can be extended to quantum computation
following this path.

Several open challenges remain. On the one hand, while preliminary results suggest a dual-
ity between quantum computation and linear logic, a complete characterisation of this duality,
both syntactically and categorically, is still an open question. On the other hand, extending
the Lambda-S and LS calculi to fully capture quantum measurement processes, particularly in
the presence of multiple bases and dependent types, demands further development. Addition-
ally, establishing a formal correspondence between the algebraic structures of the calculi and
graphical languages such as the ZX-calculus, and exploiting this link for program verification
and optimisation, represents another promising but challenging direction.

This ongoing research program is advancing steadily, and the promising results so far suggest
that computational quantum logic is a viable and interesting direction.

Acknowledgments This work is supported by the European Union through the MSCA SE
project QCOMICAL (Grant Agreement ID: 101182520), by the Plan France 2030 through the
PEPR integrated project EPiQ (ANR-22-PETQ-0007), and by the Uruguayan CSIC grant
22520220100073UD.

References

[BvN36] Garrett Birkhoff and John von Neumann. The logic of quantum mechanics. Annals of
Mathematics, 37(4):823–843, 1936. doi:10.2307/1968621.

[Cro93] Roy Crole. Categories for Types. Cambridge University Press, 1993.
doi:10.1017/CBO9781139172707.

[DC25] Alejandro Dı́az-Caro. Towards a computational quantum logic: An overview of an on-
going research program. Invited talk at the Quantum Computing session at CiE 2025:
Computability in Europe. To appear at LNCS. Preprint at arXiv:2504.07609, 2025.

[DCD23] Alejandro Dı́az-Caro and Gilles Dowek. A new connective in natural deduction, and
its application to quantum computing. Theoretical Computer Science, 957:113840, 2023.
doi:10.1016/j.tcs.2023.113840.

[DCD24] Alejandro Dı́az-Caro and Gilles Dowek. A linear linear lambda-calculus. Mathematical
Structures in Computer Science, 34:1103–1137, 2024. doi:10.1017/S0960129524000197.

[DCD25] Alejandro Dı́az-Caro and Gilles Dowek. A new introduction rule for disjunction.
arXiv:2502.19172, 2025.

[DCDIM24] Alejandro Dı́az-Caro, Gilles Dowek, Malena Ivnisky, and Octavio Malherbe. A linear
proof language for second-order intuitionistic linear logic. In George Metcalfe, Thomas
Studer, and Ruy de Queiroz, editors, Logic, Language, Information and Computation
(WoLLIC 2024), volume 14672 of Lecture Notes in Computer Science, pages 18–35.
Springer, 2024. doi:10.1007/978-3-031-62687-6 2.

[DCDR19] Alejandro Dı́az-Caro, Gilles Dowek, and Juan Pablo Rinaldi. Two linearities for quantum
computing in the lambda calculus. BioSystems, 186:104012, 2019. Postproceedings of
TPNC 2017. doi:10.1016/j.biosystems.2019.104012.

[DCGMV19] Alejandro Dı́az-Caro, Mauricio Guillermo, Alexandre Miquel, and Benôıt Val-
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