
Fair Termination for Resource-Aware Active Objects

Francesco Dagnino2, Paola Giannini3, Violet Ka I Pun1, and Ulises Torrella1

1 Western Norway University of Applied Sciences
2 University of Genoa

3 University of Eastern Piedmont

Active object systems [13, 14, 6] are the object-oriented instantiation of the actor model [2].
They provide a useful abstraction of distributed systems with asynchronous communications,
which are represented as collections of objects (actors) interacting through asynchronous
method calls. This means that a method invocation corresponds to sending a message to
the receiver object that will eventually handle it, by running the method body. Thus, the invo-
cation does not block the execution of the caller, but immediately returns a future, which can
be subsequently used for synchronizing with the receiver and accessing the result of the call.

Among other applications, this model provides the formal basis for workflow modelling
and analysis [3, 4], where models capture the behaviour of the internal (resource-sensitive)
workflows of organisations. Workflows are processes that handle business cases and are primarily
demanded to be terminating, hence resolve the business case (a customer order, a service ticket,
etc.). In particular, the modelling language proposed in [3] is based on the ABS language [14],
an active object language with multithreaded actors and a future-based cooperative scheduling
paradigm. This means that each actor can handle multiple messages at a time, by explicitly
yielding control on future await statements.

Besides this interaction mechanism, a workflow modelling language also needs to take into
account passive/informational resources [19]. These resources move through processes while
performing a workflow, undergo transformations, can be created or destroyed and crucially
have a limited availability according to the specification domain. The interplay of asynchronous
message passing, cooperative multithreading and resource management makes it challenging to
ensure that a system can complete its task. For instance, if a thread tries to access a resource
that is not available, it remains stuck as it cannot yield control, thus preventing the whole
system from successfully terminating.

The contributions of this work are the development of a core calculus for resource-aware
active objects together with a type system ensuring that well-typed programs are fairly
terminating [9], that is, all their fair executions terminate, under a suitable fairness as-
sumption. To achieve this, we combine techniques from graded semantics and type sys-
tems [7, 1, 8, 15, 5, 18], which are quite well understood for sequential programs, with those
for fair termination [10, 11, 9, 12] , which have been developed for synchronous sessions.

More in detail, we model resources as graded constants rg where r is a name identifying the
resource and g is a grade describing the availability of the resource and thus constraining its
usage. For instance, a resource can be used a fixed number of times or in a private or public
mode. In our calculus, each actor owns a resource environment ρ, containing graded resources
which can be accessed by threads of that actor. The language provides constructs through which
a thread of an actor can hold and release resources from its resource environment. Notably,
the reduction of a hold statement asking for rg , i.e., “g copies” of the resource r , is stuck if
the amount, i.e., the grade, of the resource r in the environment ρ of the actor is not enough
to produce rg . Finally, it is important to note that the introduction of graded resources has
an impact also on the synchronization mechanism. Indeed, typically futures can be accessed
an arbitrary number of times [17, 16, 14]. However, this is not the case in our setting because
futures may contain graded resources and so, by copying the future, we would copy its content



as well, leading to a violation of the constraint on the resource usage expressed by the grade.
To overcome this issue, we treat futures linearly, allowing for them to be read only once.

In order to ensure the correct use of resources, we endow our calculus with a graded type
system [7, 1, 8, 15, 5, 18]. Besides basic types, we have graded types for resources and future
types. Then, the typing judgment for expressions has the following shape: Φ; Σ; Γ ⊢ e : T ; Φ′,
where the resource context Φ tracks the resource requirements the expression poses on each actor
and it is handled like a graded context, the future context Σ tracks, in a linear way, the futures
that the expression will read, and an almost standard variable context Γ where each variable is
handled in a linear, graded or unrestricted way depending on its type. An expression is assigned
a type T and a “release context” Φ′ with the resources that the expression will release into
the system. This judgment allows us to “chain” resource production and consumption in the
sequential composition, enabling a form of reuse of resources, and also expose this information
on the method type. Thus, given that the body of a method is an expression, its return type
will be T , corresponding to the return value of the body, plus the resources released into the
system Φ′. Then, on account of all methods being asynchronous, the type of a method call will
be a Future Fut⟨T ,Φ′⟩. Hence, an await expression on a future of such type will have type T
and release context Φ′, so that the resources released by the method call can be reused by the
process accessing its result.

Futures are the lone communication mechanism of processes. To avoid circular dependencies
on futures we enforce a left to right future dependency on configurations by typing processes
with judgments of shape: Φ; Σ ⊢ P :: Σ′, where there is a left-hand side resource context Φ for
the required resources of the process, a left-hand side future context Σ for used futures, and a
right-hand side future context Σ′ for the produced futures. Processes are composed by parallel
composition, whose typing rule sums up the resource contexts of the two parallel processes and
checks that the process on the right only reads futures produced by the process on the left, thus
ensuring that the dependency graph on futures is acyclic.

The main result of this work is a proof that well-typed configurations are fairly terminating.
This is achieved applying a proof technique from [9] ensuring that to obtain fair termination it
is enough to prove the standard subject reduction and weak termination of well-typed configu-
rations. The latter means that every well-typed configuration admits a terminating execution.
Note that, since our calculus supports a non-deterministic choice operator, this property does
not forbid non-termination, but it ensures that termination is always possible. To prove this
result, following [9], we annotate typing judgments with a measure, taken from a well-founded
poset, and prove that there is always a reduction step making such measure decrease. The
proof of subject reduction poses some challenges as well. Indeed, it does not hold for standard
graded semantics and type systems [8, 5] because resource consumption in graded semantics
usually is non-deterministic, hence only a form of “may subject reduction” can be proved, where
well-typedness after a step is not guaranteed. Therefore, in order to recover subject reduction,
we need to define a semantics where resources are consumed in a deterministic way and this
requires an extension of the usual algebraic structure of grades adopted in the literature. Fi-
nally, by fair termination we guarantee that every well-typed system can always successfully
terminate and so it is resource safe and never stuck.

This work is a first step towards integrating resource-awareness by grading in active objects
systems, ensuring strong behavioural properties like fair termination. Notably, we would like
to relax the linearity constraint on futures by treating them in a graded way as well. Moreover,
it would be interesting to investigate a system where threads can yield control also on hold
statements, so that they could be paused until the required resources are available, thus reducing
the possibility for an actor of being stuck.

2



References

[1] Andreas Abel and Jean-Philippe Bernardy. A unified view of modalities in type systems. Proc.
ACM Program. Lang., 4(ICFP):90:1–90:28, 2020.

[2] Gul A. Agha. Actors: a Model of Concurrent Computation in Distributed Systems (Parallel Pro-
cessing, Semantics, Open, Programming Languages, Artificial Intelligence). PhD thesis, University
of Michigan, USA, 1985.

[3] Muhammad Rizwan Ali, Yngve Lamo, and Violet Ka I Pun. Cost analysis for a resource sensitive
workflow modelling language. Sci. Comput. Program., 225:102896, 2023.

[4] Muhammad Rizwan Ali, Violet Ka I Pun, and Guillermo Román-Dı́ez. Easyrpl: A web-based tool
for modelling and analysis of cross-organisational workflows. CoRR, abs/2502.20972, 2025.

[5] Riccardo Bianchini, Francesco Dagnino, Paola Giannini, and Elena Zucca. Resource-aware sound-
ness for big-step semantics. Proc. ACM Program. Lang., 7(OOPSLA2):1281–1309, 2023.

[6] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch Johnsen,
Ka I Pun, Silvia Lizeth Tapia Tarifa, Tobias Wrigstad, and Albert Mingkun Yang. Parallel objects
for multicores: A glimpse at the parallel language encore. In Marco Bernardo and Einar Broch
Johnsen, editors, Formal Methods for Multicore Programming - 15th International School on For-
mal Methods for the Design of Computer, Communication, and Software Systems, SFM 2015,
Bertinoro, Italy, June 15-19, 2015, Advanced Lectures, volume 9104 of Lecture Notes in Computer
Science, pages 1–56. Springer, 2015.

[7] Alöıs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative coeffect
calculus. In Zhong Shao, editor, Programming Languages and Systems - 23rd European Symposium
on Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8410
of Lecture Notes in Computer Science, pages 351–370. Springer, 2014.

[8] Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. A graded
dependent type system with a usage-aware semantics. Proc. ACM Program. Lang., 5(POPL):1–32,
2021.

[9] Luca Ciccone, Francesco Dagnino, and Luca Padovani. Fair termination of multiparty sessions. J.
Log. Algebraic Methods Program., 139:100964, 2024.

[10] Luca Ciccone and Luca Padovani. Fair termination of binary sessions. Proc. ACM Program. Lang.,
6(POPL):1–30, 2022.

[11] Luca Ciccone and Luca Padovani. An infinitary proof theory of linear logic ensuring fair termi-
nation in the linear π-calculus. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors,
33rd International Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022,
Warsaw, Poland, volume 243 of LIPIcs, pages 36:1–36:18. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022.

[12] Francesco Dagnino and Luca Padovani. small caps: An infinitary linear logic for a calculus of pure
sessions. In Alessandro Bruni, Alberto Momigliano, Matteo Pradella, Matteo Rossi, and James
Cheney, editors, Proceedings of the 26th International Symposium on Principles and Practice of
Declarative Programming, PPDP 2024, Milano, Italy, September 9-11, 2024, pages 4:1–4:13. ACM,
2024.

[13] Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crystal Chang
Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-Reyes, and
Albert Mingkun Yang. A survey of active object languages. ACM Comput. Surv., 50(5):76:1–
76:39, 2017.

[14] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS: A
core language for abstract behavioral specification. In Bernhard K. Aichernig, Frank S. de Boer,
and Marcello M. Bonsangue, editors, Formal Methods for Components and Objects - 9th Interna-
tional Symposium, FMCO 2010, Graz, Austria, November 29 - December 1, 2010. Revised Papers,

3



volume 6957 of Lecture Notes in Computer Science, pages 142–164. Springer, 2010.

[15] Ugo Dal Lago and Francesco Gavazzo. A relational theory of effects and coeffects. Proc. ACM
Program. Lang., 6(POPL):1–28, 2022.

[16] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda calculus with
futures. Theor. Comput. Sci., 364(3):338–356, 2006.

[17] Siva Somayyajula and Frank Pfenning. Type-based termination for futures. In Amy P. Felty,
editor, 7th International Conference on Formal Structures for Computation and Deduction, FSCD
2022, August 2-5, 2022, Haifa, Israel, volume 228 of LIPIcs, pages 12:1–12:21. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022.

[18] Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal, Joey Velez-Ginorio, and
Stephanie Weirich. Effects and coeffects in call-by-push-value. Proc. ACM Program. Lang.,
8(OOPSLA2):1108–1134, 2024.

[19] Michael zur Muehlen. Organizational management in workflow applications - issues and perspec-
tives. Inf. Technol. Manag., 5(3-4):271–291, 2004.

4


	References

