
Type Theory and Themes in Philosophical Logic

Greg Restall
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Type theorists share interests and concerns with philosophical logicians. This isn’t surprising,
since Martin-Löf is (among other things) a philosopher, and type theory was born in philoso-
phy [46, 47, 48, 49]. Although type theory has come into its own in computer science—and,
more recently, in mathematics with the rise of assistants—the connections between type theory
and philosophical logic go beyond Martin-Löf’s original motivations. There are many fresh
points of contact with active research areas in philosophical logic. In the interest of fostering
communication between these different traditions, I will sketch some of these connections.

Modal and Substructural Logics. Modal logics (extending propositional logic with modal
operators, like 2, for necessity, and ♢ for possibility) became a focus in philosophical logic
in the second half of the 20th Century [32, 36], while its application to computer science
took some time, with the development of dynamic logic [29, 63, 64]. Substructural logics, on
the other hand, arose independently inside philosophy [2, 3, 72] with the study of relevant
logics and entailment, linguistics [38, 39, 40, 54, 55] with the Lambek calculus, and computer
science [27, 28, 80, 81], in linear logic. Recent work on modal [10, 30, 34] and substructural [45,
53] type theories provide natural areas of intersection with contemporary philosophical logic.
The vast bulk of formal work in modal logic uses possible worlds semantics [11, 14, 15], as
does philosophical work on substructural logics [43, 44, 59, 67]. These models have their use
to represent propositions (types) and the entailment between them, but provide little, to no
insight concerning the identity of the proofs or constructions that bear those types, so they
can be of only limited use in modelling a properly rich type theory. The same goes for work in
algebraic models.1

Modal and substructural algebras, on the other hand, are well understood structures [22,
25, 58] which should prove useful for type-theoretic considerations. One important insight has
been the centrality of residuation (Galois connection, adjunction) as a unifying principle [18,
21, 22, 66]. A necessity modality 2 gains its distinctive features in connection connected with
dual, possibility modality ♦, for which we have a ≤ 2b iff ♦a ≤ b. Work on the proof theory
of modal and substructural logics [7, 62] can provide a more natural point of connection with
categorical semantics for type theories [41].

Intensionality and Identity. Homotopy type theory [70, 79] and cubical type theory [4, 5,
16] bring the logic of identity into focus, by raising the prospect of different grounds for an
identity fact of the form a = b. Questions about how best to model identity in a type theory
raises questions that philosophers ask using the terms sense and reference. If a = b then the
two different terms a and b must have the same reference (or value), but the possibility remains
open that these two terms might have different senses (meanings). The extensional theory
of identity is straightforward: everything is identical to itself, and not to anything else [42,
p. 192]. Once we move from reference to sense, and consider non-extensional phenomena, such
as meaning, knowledge, proof, or construction, matters are more nuanced [20, 24, 50]. We might

1These are partially ordered structures a ≤ b iff a entails b. This is a degenerate category in which there is
at most one arrow between any two objects.
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know that Clark Kent is Clark Kent, without knowing that Clark Kent is Superman, even
though Clark Kent is Superman. The terms ‘Clark Kent’ and ‘Superman’ refer to the same
item, but do so in different ways [56, 57]. Different accounts of the semantics of identity give us
different options for understanding how terms might pick out their values, and, more generally
the space of possible semantic values of identity claims between items of each type [9].

Classical Logic. Intuitionistic type theory is constructive, and this raises the question of
the status of classical reasoning. There are different approaches to relating classical and con-
structive logic, such as embedding classical reasoning inside a constructive language by way
of a translation [78, Sect. 2.3] (which can be interpreted by way of continuations [69, 77]), or
extending the term vocabulary [60, 61] or by extending judgement forms to include positive
and negative judgements [17, 19]. These approaches parallel considerations in philosophical
logic. Some approaches to classical logic start with intuitionist natural deduction and add new
inference forms [51, 52], others are bilateral [65], encoding proofs involving both positive and
negative judgement forms [73, 74, 75]. Other approaches interpret the sequent calculus in terms
of assertion and denial [71, 68]. Recent work on assertion and denial distinguishes two forms:
strongly deny p is to rule p out; to weakly deny it is to withdraw its assertion and to keep open
the option to strongly deny it [33]. Weak and strong denial both clash with assertion2 and
when treating assertion and denial, it is important to distinguish their strong and weak forms.

Speech Acts. A type theory is an account of judgement. One distinctive features of de-
pendent type theory is that the rules governing different concepts can interleave the different
judgement forms. Whether B(a) counts as a type may depend on whether the term a inhabits
another type A. To focus on propositions, whether B counts as a prop can depend on whether
another proposition A is true.3 Traditional grammars form the syntax of the language first,
independently of truth conditions, but some contemporary theories of propositional content
mirror this structure. ‘The king of France is bald’ expresses an assertion only if there is a
King of France [76]: predication presupposes reference. Dependent type theories form a natural
context in which presupposition phenomena like this can be modelled and studied.

However, we can do more with our language than form assertions, denials, suppositions and
inferences [35]. In natural and in artificial languages, we find imperatives, promises, requests,
etc., which differ from judgement forms in many ways [6, 8]. Philosophers and linguists have
done a great deal of work on the function and logic different forms of speech acts [23, 26, 37],
which may prove salient when exploring the semantics of languages with imperatives, and other
non-assertoric forms.

Formal and Applied Theory. Beneath these points of contact, there is a deeper connection
between applied computational type theory and philosophical logic. A formal type theory is a
structural presentation of forms of judgement, which may be interpreted, as Martin-Löf showed
us, as a theory of sets, of computation, of propositions, and in other ways besides. A prop-
erly computational type theory takes the inductive presentation of types and terms to stand
atop a fundamental computational substrate [1, 31, 47]. Terms describe computations, which
are classified by types. The distinction between a formal and an applied type theory parallels

2And dually, we have strong assertion (ruling p in) and weak assertion (which merely withdraws the strong
denial of p and leaves the possibility of strongly asserting p open).

3A formation rule for the conditional ⊃ states that A ⊃ B is a proposition when A is a proposition and
requires that B is a proposition only given that A is true [49].
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Brandom’s distinction between a formal and a material account of inference [12, 13]. A prop-
erly material theory of inference describes the inferential connections between the judgements
implicit in our everyday practice. As I learn the concept ‘square’ I learn that squares are not
circles, and that squares have four sides, of equal length. These are not learned as facts we
articulate, but as capacities we exercise. To learn a language is to learn how different concepts
bear upon each other and on the world. Rules for logical concepts enable us to make explicit
these inferential relations between our more basic commitments, in that the rules governing
those concepts tie them to the underlying and preexisting communicative practice. We take
justification for a conditional claim A → B to be provided by the means to justify B in a
context where we take A as given. The formal structure of a material theory inference bears
a remarkable resemblance to the computational theory of types, where instead of the norms
governing justifications and grounds for human judgements, we have computations and their
classification into different types. So, it is not surprising that insights from one area can be
applied to the other, since there is a single formal framework that describes both domains.

A fresh challenge for research, however, is to develop a properly hybrid type theory, encom-
passing both computation and human communicative practices, in order to better understand
the possibilities for communication involving both human judgement and machine computation.
After all, two domains of application for the discipline of type theory are in (a) the design of
expressive and performant dependently typed functional programming languages, and (b) the
design of modular, expressive and natural proof assistants. Both of these tasks involve taking
both the computational and the communicative roles of the underlying type theory seriously,
so it seems appropriate to adopt a framework that helps us keep both roles in view at once.4
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[47] Per Martin-Löf. Constructive mathematics and computer programming. Philosophical Transac-
tions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 312(1522):501–
518, 1984.

[48] Per Martin-Löf. Intuitionistic Type Theory: Notes by Giovanni Sambin of a Series of Lectures
Given in Padua, June 1980. Number 1 in Studies in Proof Theory. Bibliopolis, Naples, 1984.
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