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Introduction. Internalizing the parametricity principle introduced by Reynolds has sev-
eral well-known benefits for Type Theory [6], including derivation of induction principles for
lambda-encoded data, and “free theorems” derived solely from types [8, 7]. Bernardy and
Moulin identified a critical issue taking the (meta-level) relational interpretation [—] of a type
containing an internalized use [ X7 of that interpretation [4]: there is a mismatch between the
meta-level interpretation, which is indexed by variable renamings, and the internalized version,
which it seems should not be. Bernardy and Moulin’s solution, based on a symmetry property
of relational interpretations, necessitates a pervasive change to the theory, where abstractions
now bind hypercubes of variables. Altenkirch et al. follow this geometric approach, leading to
a complex formal system [1]. Our goal is a simpler solution.

This abstract describes a constructive type theory [[CC] (pronounced “lift CC”) in progress,
which extends the Calculus of Constructions (CC) with an internalized parametricity principle.
Tcc’s introduces a construct [[A]¥ (“lifting”), with i < k, where k is the arity of the relation.
Definitional equality unfolds applications of this operator, as suggested also by Altenkirch et
al. [1]. But [[CC]| avoids the mismatch identified by Bernardy and Moulin, by internalizing the
meta-level renamings as part of a type form called a lifting universal, with syntax Iz (z) : A. B.

Syntax. The syntax of [[CC]| is shown in Figure 1. It can be seen as an extension of the
Calculus of Constructions (CC), and uses the sorts x and O as in [2]. Metavariable 6 ranges
over the binders. We have generalized forms for II-types, A-abstractions, and applications, as
well as [[t]|)¥ for internalized interpretation. For [[¢]¥, it is required that i < k.

Lifting universals. In general, the interpretation of a type T as a k-ary relation is indexed
by k+ 1 variable renamings po, - - - , px. Bernardy and Lasson realize these renamings by a fixed
scheme for deriving the names of new variables xg, -+ ,xg_1, 2 from a starting variable z [3].
Here, in contrast, we will consider the renamings explicitly. If i < k, then p; maps each free
variable z in T to a variable x; used in speaking about the i’th term that the relation is relating.
The renaming py is used to map x : R to a variable z;, showing that the inputs Z are related
by the interpretation of the type R. For simplicity, we take x; to be z, so py is the identity
renaming and may be omitted. We write z* for the vector xq, - , Tj_1.

ccTl augments the II-binder from CC to quantify additionally over z*, with syntax ITz(z) :
R .S. This combines the renamings x — x;, for i < k, with accepting an input = that proves the
7 are related by the relational interpretation of R. The formation, introduction, and elimination

naturals N > 4,5,k

variables Var 3 z,y,2, XY, Z

binders Bnd > 0 a= A | I

sorts Srt 2 s n= x| O

terms Tm > AB,Cit,R,S,T == =z | s | 0x(z):R.S | t't{#) | t]F
contexts Ctr > T w= - | 2(Z) AT

Figure 1: Syntax for [[CC]|
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P'FA:sy Iya(z): AF B: sy FFMMz(z): A.B:s z(z): A-t: B
FFa(Z): A.B: s9 PEXx(Z): A.t:TMx(Z): A. B

P :Hz(z*): A.C THt{t):A (Vi<k.Dht;:JATK) DHt: AN ¢
L=t t{#*) : [t{t)/x]C [ Ft{Ek) : A

Figure 2: Typing rules for lifting universals, along with helper judgement I' - () : A

ROYEAE =t i<k

[t(T) /=] [T t

() /2] TyT7 = [ly[l} n#kvVy#ax
[t(t)/2]x =t

[t(t)/x]y Yy xF#y

[t(t) /)% = *

(t({t)/x0y(y) - R.S = 0y() :[t{t)/=|R.[t(t)/x]S
[t(t)/2](s" 5(5)) = [K(t)/x]s" [t(t)/x]s([t(t)/x]5)

Figure 3: Applying a substitution [¢(¢)/z] to a term

rules are shown in Figure 2. When k = 0, these rules are isomorphic to the usual ones from CC
for II-types, and we use the usual syntax [Tz : A. B for Hxz() : A. B. Similarly, ¢’ ¢ abbreviates
t' t(), and Az : A. B abbreviates Ax() : A. B. Figure 3 defines substitution. The critical idea
is to respect the lifting operator: when substituting into [[#]/¥, we choose the i’th term from
the vector ¢ (first equation of Figure 3).

Typing liftings. Figure 4 gives the last typing rules for [[CC]|, which are those for liftings,
as well as the axiom % : O and the conversion rule. Parametricity is expressed in rule 7. The
rules vr and vp show how assumptions of the form x(Z) : A contribute to typing: z is a proof
that Z is in the relational interpretation of A, and each z; has type [[A])¥, where the lifting is
needed to interpret variables y in A introduced with similar assumptions y(g) : B.

Conversion. [[CC]| uses definitional equality to simplify uses of [[—]]. The critical idea is
to use a contextual definitional equality of the form I' H A ~ B, and to add an assumption
x(Z) : A to the context in the case of a lifting universal. This information may then be used
to reduce [[z])¥, as expressed in rule L of Figure 5, which says that if we find an assumption
x(z) : A in I' where the length of Z is k; for some j, then we can replace x with x;;, while
retaining the other liftings. (Here, i; is the requested position from the [[z]* notation.) But
this replacement is only allowed for positional liftings, where i; < k;. This replacement can
be justified as a permutation of a positional lifting with other liftings. But such permutation

T'FA:B i<k I'A:B -

I F AT : [B1F U+ AT - 1BTE TATG - - TATE -, Lkx:0
kN . kN . :

1’<£L'>A€F o .’E<.’IJ>A€F Z<k’U THt:A THA~B

Dha: AN 2 ko AT 'H¢: B

Figure 4: Typing rules for liftings, plus additional standard rules
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x & FV(B) x{zki): AeT 1; < kj

ThIa(E®): A B~0z: [A]* Uz: [ATf 2.8 Tk [2]F ~ [z, T8

S=11X:A.B
THISTF~AYR: S.TIX(X*): A.[B]f (Y X) T+ [JAB ~TANE [BTE---BIF_,

TrA~A T,2(z): Ar B~ B’ i<k
FHOx(z): A.B~0x(z): A/.B" TH[[Fe~x TE[F2AY %V =«

Figure 5: Selected rules for definitional equality.

does not make sense for relational liftings ([AT)¥), where arity-k and arity-j relational liftings
result in different arity relations, and hence could not be permuted. The first rule of Figure 5
makes IIz(Z) : A. B an abbreviation for the nested II-type one would expect from the relational
interpretation of ITx : A. B, as long as x has been completely eliminated from the body. The
middle row of Figure 5 expresses the relational semantics of II-types using lifting universals, and
applications using positional liftings (0 < ¢ < k) and the relational lifting (i = k). Positional
lifting behaves homomorphically with respect to the constructs of CC (rules omitted).

Example: iterated internal parametricity. Internalized unary parametricity is ex-
pressed as II A : x.Ila : [[A]}.[[AT} a (abbreviate this 7). The type given for a is as required
by the type of [A])}, based on rule 7. Let us calculate [[773.

713

/\):(QQ:T.HA<{13> cx Ta(@®) : AN TTATL a3 (X Aa)

AXZ: T.HA<4?> :*.Ha(c’l?) cTATS - TTATN3 Malld Tall} (X A a)

)\)(2 : THA<A3> :*.Ha<&5> : WATI% . ”ITA—”H-I% ap aq (XO AO ao) (Xl A1 CLl)

1R R

Call the last type above @, and let us see how its body is typable. For readability, write 4;
for [AJ!. A; does not equal A;, as the length of A in the context is 3, which does not match
the arity 1 of this lifting. The type of [[ATi]3 is the following, again followed by several
definitionally equal types:

W*ﬂ% Aoﬂ% W«‘hﬂ% Wv‘hﬂ%
TAo — %115 [ATG TATR
H.T<£f3> : .A() . H—Alﬂg o — ”Alﬂ% Tl — %

To type the body of @, we use rule L to simplify a positional lifting when it is nested in another
lifting. For one example, using L, we can prove that the type of (Xo Ag ap), which is [A¢]] ao,
equals [[TATIT2 ao. Since we have A(A3) : x in the context, the positional lifting AT is
equal to [[Ag]|}, replacing A with Ag. This holds similarly for the types of @ and (X; A4; a1),
allowing the body of @ to be typed.

Towards normalization. Developing a semantics for [[CC]| seems challenging, because of
liftings. Omne would need to define a relational semantics that can be iteratively applied, so
one could apply the semantics to an object already in the semantic domain. Instead of this
path, I propose to use the Girard projection to reduce normalization of [[CC]| to normalization
of F,,, as in [2]. It then becomes plausible to consider internalizing Girard projection as a type
construct, as in [5], which would allow new definitional equalities as discussed in [8].

Acknowledgments. Thanks to the anonymous reviewers for helpful comments.
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