Internalized Parametricity via Lifting Universals

Aaron Stump

Boston College, Boston, Massachusetts, aaron. stump@bc.edu

Introduction. Internalizing the parametricity principle introduced by Reynolds has sev-
eral well-known benefits for Type Theory [6], including derivation of induction principles for
lambda-encoded data, and “free theorems” derived solely from types [8, 7]. Bernardy and
Moulin identified a critical issue taking the (meta-level) relational interpretation [—] of a type
containing an internalized use [X7 of that interpretation [4]: there is a mismatch between the
meta-level interpretation, which is indexed by variable renamings, and the internalized version,
which it seems should not be. Bernardy and Moulin’s solution, based on a symmetry property
of relational interpretations, necessitates a pervasive change to the theory, where abstractions
now bind hypercubes of variables. Altenkirch et al. follow this geometric approach, leading to
a complex formal system [1]. Our goal is a simpler solution.

This abstract describes a constructive type theory [[CC] (pronounced “lift CC”) in progress,
which extends the Calculus of Constructions (CC) with an internalized parametricity principle.
Tcc’s introduces a construct [[A]¥ (“lifting”), with i < k, where k is the arity of the relation.
Definitional equality unfolds applications of this operator, as suggested also by Altenkirch et
al. [1]. But [[CC]| avoids the mismatch identified by Bernardy and Moulin, by internalizing the
meta-level renamings as part of a type form called a lifting universal, with syntax Iz (z) : A. B.

Syntax. The syntax of [[CC]| is shown in Figure 1. It can be seen as an extension of the
Calculus of Constructions (CC), and uses the sorts x and O as in [2]. Metavariable 6 ranges
over the binders. We have generalized forms for II-types, A-abstractions, and applications, as
well as [[t]|)¥ for internalized interpretation. For [[¢]¥, it is required that i < k.

Lifting universals. In general, the interpretation of a type T as a k-ary relation is indexed
by k+ 1 variable renamings po, - - - , px. Bernardy and Lasson realize these renamings by a fixed
scheme for deriving the names of new variables xg, -+ ,xg_1, 2 from a starting variable z [3].
Here, in contrast, we will consider the renamings explicitly. If i < k, then p; maps each free
variable z in T to a variable x; used in speaking about the i’th term that the relation is relating.
The renaming py is used to map x : R to a variable z;, showing that the inputs Z are related
by the interpretation of the type R. For simplicity, we take x; to be z, so py is the identity
renaming and may be omitted. We write z* for the vector xq, - , Tj_1.

ccTl augments the II-binder from CC to quantify additionally over z*, with syntax ITz(z) :
R .S. This combines the renamings x — x;, for i < k, with accepting an input = that proves the
7 are related by the relational interpretation of R. The formation, introduction, and elimination

naturals N > 4,5,k

variables Var 3 z,y,2, XY, Z

binders Bnd > 0 a= A | I

sorts Srt 2 s n= x| O

terms Tm > AB,Cit,R,S,T == =z | s | 0x(z):R.S | t't{#) | t]F
contexts Ctr > T w= - | 2(Z) AT

Figure 1: Syntax for [[CC]|

Internalized Parametricity via Lifting Universals Aaron Stump

P'FA:sy Iya(z): AF B: sy FFMMz(z): A.B:s z(z): A-t: B
FFa(Z): A.B: s9 PEXx(Z): A.t:TMx(Z): A. B

P :Hz(z*): A.C THt{t):A (Vi<k.Dht;:JATK) DHt: AN ¢
L=t t{#*) : [t{t)/x]C [Ft{Ek) : A

Figure 2: Typing rules for lifting universals, along with helper judgement I' - () : A

ROYEAE =t i<k

[t(T) /=] [T t

() /2] TyT7 = [ly[l} n#kvVy#ax
[t(t)/2]x =t

[t(t)/x]y Yy xF#y

[t(t) /)% = *

(t({t)/x0y(y) - R.S = 0y() :[t{t)/=|R.[t(t)/x]S
[t(t)/2](s" 5(5)) = [K(t)/x]s" [t(t)/x]s([t(t)/x]5)

Figure 3: Applying a substitution [¢(¢)/z] to a term

rules are shown in Figure 2. When k = 0, these rules are isomorphic to the usual ones from CC
for II-types, and we use the usual syntax [Tz : A. B for Hxz() : A. B. Similarly, ¢’ ¢ abbreviates
t' t(), and Az : A. B abbreviates Ax() : A. B. Figure 3 defines substitution. The critical idea
is to respect the lifting operator: when substituting into [[#]/¥, we choose the i’th term from
the vector ¢ (first equation of Figure 3).

Typing liftings. Figure 4 gives the last typing rules for [[CC]|, which are those for liftings,
as well as the axiom % : O and the conversion rule. Parametricity is expressed in rule 7. The
rules vr and vp show how assumptions of the form x(Z) : A contribute to typing: z is a proof
that Z is in the relational interpretation of A, and each z; has type [[A])¥, where the lifting is
needed to interpret variables y in A introduced with similar assumptions y(g) : B.

Conversion. [[CC]| uses definitional equality to simplify uses of [[—]]. The critical idea is
to use a contextual definitional equality of the form I' H A ~ B, and to add an assumption
x(Z) : A to the context in the case of a lifting universal. This information may then be used
to reduce [[z])¥, as expressed in rule L of Figure 5, which says that if we find an assumption
x(z) : A in I' where the length of Z is k; for some j, then we can replace x with x;;, while
retaining the other liftings. (Here, i; is the requested position from the [[z]* notation.) But
this replacement is only allowed for positional liftings, where i; < k;. This replacement can
be justified as a permutation of a positional lifting with other liftings. But such permutation

T'FA:B i<k I'A:B -

I F AT : [B1F U+ AT - 1BTE TATG - - TATE -, Lkx:0
kN . kN . :

1’<£L'>A€F o .’E<.’IJ>A€F Z<k’U THt:A THA~B

Dha: AN 2 ko AT 'H¢: B

Figure 4: Typing rules for liftings, plus additional standard rules

Internalized Parametricity via Lifting Universals Aaron Stump

x & FV(B) x{zki): AeT 1; < kj

ThIa(E®): A B~0z: [A]* Uz: [ATf 2.8 Tk [2]F ~ [z, T8

S=11X:A.B
THISTF~AYR: S.TIX(X*): A.[B]f (Y X) T+ [JAB ~TANE [BTE---BIF_,

TrA~A T,2(z): Ar B~ B’ i<k
FHOx(z): A.B~0x(z): A/.B" TH[[Fe~x TE[F2AY %V =«

Figure 5: Selected rules for definitional equality.

does not make sense for relational liftings ([AT)¥), where arity-k and arity-j relational liftings
result in different arity relations, and hence could not be permuted. The first rule of Figure 5
makes IIz(Z) : A. B an abbreviation for the nested II-type one would expect from the relational
interpretation of ITx : A. B, as long as x has been completely eliminated from the body. The
middle row of Figure 5 expresses the relational semantics of II-types using lifting universals, and
applications using positional liftings (0 < ¢ < k) and the relational lifting (i = k). Positional
lifting behaves homomorphically with respect to the constructs of CC (rules omitted).

Example: iterated internal parametricity. Internalized unary parametricity is ex-
pressed as II A : x.Ila : [[A]}.[[AT} a (abbreviate this 7). The type given for a is as required
by the type of [A])}, based on rule 7. Let us calculate [[773.

713

/\):(QQ:T.HA<{13> cx Ta(@®) : AN TTATL a3 (X Aa)

AXZ: T.HA<4?> :*.Ha(c’l?) cTATS - TTATN3 Malld Tall} (X A a)

)\)(2 : THA<A3> :*.Ha<&5> : WATI% . ”ITA—”H-I% ap aq (XO AO ao) (Xl A1 CLl)

1R R

Call the last type above @, and let us see how its body is typable. For readability, write 4;
for [AJ!. A; does not equal A;, as the length of A in the context is 3, which does not match
the arity 1 of this lifting. The type of [[ATi]3 is the following, again followed by several
definitionally equal types:

W*ﬂ% Aoﬂ% W«‘hﬂ% Wv‘hﬂ%
TAo — %115 [ATG TATR
H.T<£f3> : .A() . H—Alﬂg o — ”Alﬂ% Tl — %

To type the body of @, we use rule L to simplify a positional lifting when it is nested in another
lifting. For one example, using L, we can prove that the type of (Xo Ag ap), which is [A¢]] ao,
equals [[TATIT2 ao. Since we have A(A3) : x in the context, the positional lifting AT is
equal to [[Ag]|}, replacing A with Ag. This holds similarly for the types of @ and (X; A4; a1),
allowing the body of @ to be typed.

Towards normalization. Developing a semantics for [[CC]| seems challenging, because of
liftings. Omne would need to define a relational semantics that can be iteratively applied, so
one could apply the semantics to an object already in the semantic domain. Instead of this
path, I propose to use the Girard projection to reduce normalization of [[CC]| to normalization
of F,,, as in [2]. It then becomes plausible to consider internalizing Girard projection as a type
construct, as in [5], which would allow new definitional equalities as discussed in [8].

Acknowledgments. Thanks to the anonymous reviewers for helpful comments.

1R

Internalized Parametricity via Lifting Universals Aaron Stump

References

[1]

2]

Thorsten Altenkirch, Yorgo Chamoun, Ambrus Kaposi, and Michael Shulman. Internal
parametricity, without an interval. Proc. ACM Program. Lang., 8(POPL):2340-2369, 2024.

H. P. Barendregt. Lambda calculi with types. In Handbook of Logic in Computer Science.
Oxford University Press, 12 1992.

Jean-Philippe Bernardy and Marc Lasson. Realizability and parametricity in pure type
systems. In Martin Hofmann, editor, Foundations of Software Science and Computational
Structures - 14th International Conference, FOSSACS 2011, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbriicken,
Germany, March 26-April 3, 2011. Proceedings, volume 6604 of Lecture Notes in Computer
Science, pages 108-122. Springer, 2011.

Jean-Philippe Bernardy and Guilhem Moulin. A computational interpretation of para-
metricity. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Sci-
ence, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 135-144. IEEE Computer
Society, 2012.

Jean-Philippe Bernardy and Guilhem Moulin. Type-theory in color. In Proceedings of the
18th ACM SIGPLAN International Conference on Functional Programming, ICFP "13, page
61-72, New York, NY, USA, 2013. Association for Computing Machinery.

John C. Reynolds. Types, abstraction and parametric polymorphism. In R. E. A. Mason,
editor, Information Processing 83, Proceedings of the IFIP 9th World Computer Congress,
Paris, France, September 19-23, 1983, pages 513-523. North-Holland /TFIP, 1983.

Philip Wadler. Theorems for free! In Joseph E. Stoy, editor, Proceedings of the fourth
international conference on Functional programming languages and computer architecture,
FPCA 1989, London, UK, September 11-13, 1989, pages 347-359. ACM, 1989.

Philip Wadler. The girard-reynolds isomorphism (second edition). Theor. Comput. Sci.,
375(1-3):201-226, 2007.

