
A Type Theory for Comprehension Categories with

Applications to Subtyping

Niyousha Najmaei1, Niels van der Weide2, Benedikt Ahrens3, Paige Randall
North4

1 École Polytechnique, Palaiseau, France
2 Radboud University Nijmegen, The Netherlands
3 Delft University of Technology, The Netherlands

4 Utrecht University The Netherlands

We develop a type theory that we show is an internal language for comprehension categories.
Usually, the semantics of Martin-Löf type theory (MLTT) is given in discrete or full comprehen-
sion categories. Requiring a comprehension category to be full or discrete can be understood
as removing one ‘dimension’ of morphisms. In our syntax, we recover this extra dimension.
We show that this extra dimension can be used naturally to encode subtyping as sketched by
Coraglia and Emmenegger [5]. We then extend our type theory with Π-, Σ- and Id-types and
discuss how to add subtyping for these type formers to both the syntax and semantics.

Motivation There are two primary approaches to studying denotational semantics of a type
theory: one starts with syntax and later develops semantics (e.g., simply typed lambda calculus
[3], MLTT [9]), while the other begins with intended semantics and then creates a syntax for it
(e.g., cubical type theory [2, 4]). One can think of the latter as developing an internal language
for a given categorical structure. More specifically, this can be thought of as developing a class
of languages that can be used to soundly reason about the given categorical structure. Each
instance of the categorical structure then gives a specific language, called its internal language.

We enact the semantics-first process by developing an internal language for comprehension
categories. We focus on comprehension categories as they constitute the most general semantics
for dependent type theory in the sense that all other categorical structures that are used to
interpret dependent theory embed in and can be compared in comprehension categories [1].
However, the structural rules of Martin-Löf dependent type theory (strMLTT) are far from being
complete with respect to comprehension categories – indeed, one often restricts to full or discrete
comprehension categories to give semantics for strMLTT. Instead of restricting comprehension
categories to full or discrete ones, we enlarge the syntax to describe all comprehension categories.

A comprehension category consists, among other things, of two categories: one whose objects
interpret the contexts and one which interprets types. Thus, at first glance, a comprehension
category can express morphisms between both contexts and types. In strMLTT, however, type
morphisms can be recovered from the context morphisms. Both the requirements of discreteness
and fullness ‘kill off’ this ‘extra dimension’ of morphisms. By not postulating discreteness
or fullness, we gain back this ‘extra dimension’ in the syntax. As argued by Coraglia and
Emmenegger [5], morphisms between types can be used to encode subtyping in a natural way.
Thus, our syntax and semantics can capture coercive subtyping.

CCTT We design judgements and structural rules, which we call CCTT. The judgements of
CCTT include the following two judgements which are not present in strMLTT.

1. Γ ⊢ s : ∆, where Γ,∆ ctx

2. Γ | A ⊢ t : B, where Γ ⊢ A,B type

A Type Theory for Comprehension Categories Najmaei, Van der Weide, Ahrens, North

Judgement 1 adds explicit substitution to the syntax in the sense of [6]. Judgement 2 expresses
‘t is a witness for A being a subtype of B’. Judgements 1 and 2 are interpreted as the morphisms
in the category of contexts and types in a comprehension category, respectively.

We want types (contexts) and type morphisms (substitutions) to form a category. The rules
of CCTT regarding type morphisms are as follows.

Γ ctx Γ ⊢ A type
ty-mor-id

Γ | A ⊢ 1A : A

Γ ⊢ A,B,C type Γ | A ⊢ t : B Γ | B ⊢ t′ : C
ty-mor-comp

Γ | A ⊢ t′ ◦ t : C
Γ | A ⊢ t : B

ty-id-unit
Γ | A ⊢ t ◦ 1A ≡ t : B
Γ | A ⊢ 1B ◦ t ≡ t : B

Γ | A ⊢ t : B Γ | B ⊢ t′ : C Γ | C ⊢ t′′ : D
ty-comp-assoc

Γ | A ⊢ t′′ ◦ (t′ ◦ t) ≡ (t′′ ◦ t′) ◦ t : D

We have similar rules for context morphisms. The rules for context extension and sub-
stitution mirror the action of the comprehension functor and the reindexing functors in a
comprehension category, respectively. Some of these rules are as follows:

Γ ctx Γ ⊢ A type
ext-ty

Γ.A ctx

Γ ⊢ A,B type Γ | A ⊢ t : B
ext-tm

Γ.A ⊢ Γ.t : Γ.B

Γ ctx Γ ⊢ A type
ext-proj

Γ.A ⊢ πA : Γ

Γ,∆ ctx Γ ⊢ s : ∆ ∆ ⊢ A type
sub-ty

Γ ⊢ A[s] type

∆ ⊢ A,B type Γ ⊢ s : ∆ ∆ | A ⊢ t : B
sub-tm

Γ | A[s] ⊢ t[s] : B[s]

In CCTT, the term judgement Γ ⊢ a : A is not a primitive; instead, we introduce a notation
for it that stands for two judgements. This notation mirrors terms being interpreted as sections
of the projection morphisms πA : Γ.A → Γ in a comprehension category.

Notation 1. Γ ⊢ a : A stands for the following two judgements:

1. Γ ⊢ a : Γ.A

2. Γ ⊢ πA ◦ a ≡ 1Γ : Γ

Theorem 2 (Soundness). Every comprehension category models the rules of CCTT.

Subtyping One can regard type morphisms as witnesses of coercive subtyping: a judgement
Γ | A ⊢ t : B can be seen as t is a witness for the subtyping relation A ≤ B. Coraglia
and Emmenegger explore this in generalized categories with families (GCwFs), a structure
equivalent to comprehension categories [5]. In their notation, this judgement is written as
Γ ⊢ A ≤t B.

Proposition 3. From the rules of CCTT, we can derive the following rule.

Γ ⊢ A,B type Γ ⊢ A ≤t B Γ ⊢ a : A

Γ ⊢ Γ.t ◦ a : B

The rule in proposition 3 states that if A is a subtype of B, then a term of type A can be
coerced to a term of type B. This corresponds to the subsumption rule in coercive subtyping.

In the following table, we discuss the meaning of some of the rules of CCTT from the
subtyping perspective, and how they relate to the rules discussed in [5].

Rule of CCTT Meaning under Subtyping Rule in [5]
ty-mor-id Reflexivity of subtyping witnessed by 1A -
ty-mor-comp A ≤f B and B ≤g C give A ≤g◦f C. Trans and Sbsm
ty-id-unit Each 1A is an identity for witness composition. -
ty-comp-assoc Composition of witnesses is associative. -
ext-tm A ≤t B gives a context morphism Γ.A ⊢ Γ.t : Γ.B. -
sub-tm Substitution preserves subtyping. Wkn and Sbst

2

A Type Theory for Comprehension Categories Najmaei, Van der Weide, Ahrens, North

Type Formers We extend CCTT with Π-, Σ- and Id-types, and show that these extensions
can be interpreted in any comprehension category with suitable structure for each type former.
We then discuss how CCTT can be extended with subtyping for each type former, and define
a suitable semantic structure for interpreting these extensions.

Related Work Coercive and subsumptive subtyping have been studied from different angles.
Coraglia and Emmenegger [5] observe that vertical morphisms in GCwFs can be seen as

witnesses for coercive subtyping. They also show this in the presence of Π- and Σ-types.
Luo and Adams [8] study structural coercive subtyping syntactically. They address coher-

ence issues of composition of subtyping by having functoriality for type formers.
Laurent, Lennon-Bertrand and Maillard [7] extend MLTT to a type theory with functorial

type formers. They use this functoriality to extend MLTT to two type theories with coer-
cive and subsumptive subtyping, respectively. They also study meta-theoretic properties of
their systems, e.g. showing that their functorial system is normalizing and has decidable type
checking.

Zeilberger and Melliès [10] give a categorical view of subsumptive subtyping. They interpret
type systems as functors from a category of type derivations to a category of underlying terms.
In this setting, subtyping derivations are vertical morphisms.

References

[1] Benedikt Ahrens, Peter LeFanu Lumsdaine, and Paige Randall North. Comparing semantic frame-
works for dependently-sorted algebraic theories. In Oleg Kiselyov, editor, Programming Languages
and Systems - 22nd Asian Symposium, APLAS 2024, Kyoto, Japan, October 22-24, 2024, Pro-
ceedings, volume 15194 of Lecture Notes in Computer Science, pages 3–22. Springer, 2024.

[2] Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubical sets. In
Ralph Matthes and Aleksy Schubert, editors, 19th International Conference on Types for Proofs
and Programs, TYPES 2013, April 22-26, 2013, Toulouse, France, volume 26 of LIPIcs, pages
107–128. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2013.

[3] Alonzo Church. A formulation of the simple theory of types. The journal of symbolic logic,
5(2):56–68, 1940.

[4] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: A
constructive interpretation of the univalence axiom. FLAP, 4(10):3127–3170, 2017.

[5] Greta Coraglia and Jacopo Emmenegger. Categorical Models of Subtyping. In Delia Kesner, Ed-
uardo Hermo Reyes, and Benno van den Berg, editors, 29th International Conference on Types for
Proofs and Programs (TYPES 2023), volume 303 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 3:1–3:19, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

[6] Pierre-Louis Curien, Richard Garner, and Martin Hofmann. Revisiting the categorical interpreta-
tion of dependent type theory. Theor. Comput. Sci., 546:99–119, 2014.

[7] Théo Laurent, Meven Lennon-Bertrand, and Kenji Maillard. Definitional functoriality for depen-
dent (sub)types. volume 14576 of Lecture Notes in Computer Science, pages 302–331. Springer,
2024.

[8] Zhaohui Luo and Robin Adams. Structural subtyping for inductive types with functorial equality
rules. Math. Struct. Comput. Sci., 18(5):931–972, 2008.

[9] Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in proof theory. Bibliopolis, 1984.

[10] Paul-André Melliès and Noam Zeilberger. Functors are type refinement systems. pages 3–16.
ACM, 2015.

3

	References

