Towards Being Positively Negative about Dependent Types

Jan de Muijnck-Hughes

University of Strathclyde, UK
Jan.de-Muijnck-Hughes@strath.ac.uk

Negativity is Important for Proving and Programming Dependently typed program-
ming languages, such as Idris2 [2] and Agda [3], provide expressive environments in which we
can reason about and run our programs. Consider, for example, the following Idris2 definition
of natural numbers (Nat) and two predicates (NonZero & IsZero) that state if a given natural
number is non-zero or not:

data Nat = Z | S Nat data NonZero : Nat -> Type data IsZero : Nat -> Type
where NZ : NonZero (S n) where IZ : IsZero Z

Decision procedures support reasoning about the correctness of NonZero and IsZero, by eviden-
cing the construction of valid instances of the predicates or supplying a proof of falsity if not.
These proofs are then repurposed as verified functions for programming. For example, consider
the following ‘proof’ (nonZero) that NonZero is correct:

nonZero : (n : Nat) -> Dec (NonZero n) data Dec : a -> Type where
nonZero Z = No absurd Yes : (prf : a) -> Dec a
where No : (contra : a -> Void) -> Dec a

absurd : NonZero Z -> Void
absurd NZ impossible
nonZero (S x) = Yes NZ

Our proof (NonZero) will produce an inhabitant of NonZero if the input s non-zero (NZ), or
a proof of void if not (absurd). The generic datatype Dec encapsulates the result of NonZero,
where Yes represents the positive result and No the negative result. If we wish, however, to use
the negative result of nonZero at runtime then we cannot do so and determine why the function
failed. Although it is self-evident that a negative result for nonZero implies that the input was
non-zero, more complex predicates can fail for a variety of reasons.

Runtimes are Positive; Negativity is not Generally speaking, predicates are positive
pieces of information and construction of decision procedures using Dec only enables runtime
evidence to be produced when the ‘happy’ (positive) path is taken. All traces of negative
information (i.e. falsity) are now a (careless) compile-time whisper. If we are theorem proving in
dependently-typed languages, runtime reports of failure are not important; our code is proven
correct. If we are programming in a dependently-typed language then knowing why a decision
procedure failed is important; errors need to be reported. If we start to think more positively
about being negative, we can start to report negative information more positively.

Being Constructive about Negation is a Positive The MSFP 2022 talk ‘Data Types with
Negation’ discussed the idea of using Constructive Negation to rethink how we can work positively
with negative information when programming [1]. Within dependently typed languages we can
exploit constructive negation to rethink how we represent decidable decisions. For instance,
consider the following positive definitions:



Towards Being Positively Negative about Dependent Types Jan de Muijnck-Hughes

record Decidable where 0
constructor D Dec : Decidable -> Type
Positive : Type Dec (D positive negative no)
Negative : Type = Either negative positive

0 Cancelled : Positive -> Negative -> Void

Decidable is a datatype encapsulating the runtime irrelevant proof (identified by the @ quantifier)
that two positive pieces of information cancel each other out. Instances of Decidable are the
input to a positive Dec which is translated to an instance of Either, where the positive truth is
made Right and the positive evidence of falsity is Left. With Decidable and Dec, are decision
procedures are now positive. We can illustrate our positive decisions by pairing our definitions
of IsZero and NonZero together to produce ISZERO:

ISZERO : Nat -> Decidable isZero : (n : Nat) -> Dec (ISZERO n)
ISZERO n = D (IsZero n) (IsSucc n) prf isZero Z Right IZ
where prf : IsZero n -> NonZero n -> Void isZero (S k) Left Nz
prf IZ NZ impossible

The function prf evidences that a number cannot be simultaneously zero and non-zero: our
proof of falsity. The function ISZERO constructs the decidable predicate for a given natural
number, and isZero is proof that we can decide if a number is non-zero or not. We can even
reuse the same predicates, albeit flipped, to produce a decision procedure for NONZERO:

NONZERO : Nat -> Decidable nonZero : (n : Nat) -> Dec (NONZERO n)
NONZERO n = D (IsSucc n) (IsZero n) prf nonZero Z = Left 1Z
where prf : NonZero n -> IsZero n -> Void nonZero (S k) = Right NZ
prf NZ IZ impossible

Being Positive is Hard Through careful selection of our datatypes, we can develop the
foundations of a ‘positive’ library for decision procedures. If we are not careful with our
constructions we can easily end up with incorrect decisions being made. Take for example,
quantifying over lists using ‘All’ and ‘Any’ predicates. The opposite of the All quantifier is the
Any quantifier. Either all elements satisfy the positive predicate, or we will traverse the list until
a positive instance of the negative predicate is found. The opposite of Any is, unfortunately, not
a simple swapping of predicates as we saw with NONZERO and ISZERO. For the Any quantifier, we
need to reverse the polarity of the predicates as well. A positive Any requires us to traverse the
list and build the negative predicate until we find our positive one. The opposite of Any is that
all items in the list produced negative predicates.

This Talk is about Positively Negative Programming In this talk, I will report work-
in-progress that explores what it means to be positively negative when programming with
dependent types. I will report how constructive negation re-frames not only the construction
of a library! of positive decision procedures, but my experience using these procedures when
programming. Specifically, I will report on reasoning about standard datatypes (natural numbers,
lists, pairs, and strings) including their decidable equality, as well as their use when elaborating
concrete syntax to intrinsically-typed terms for the Simply-Typed Lambda Calculus. Finally,
I will examine how being so positive in one’s negativity can reshape existing approaches to
dependently-typed programming and report our decision procedures negativity more positively.

Thttps://github.com/jfdm/positively-negative


https://github.com/jfdm/positively-negative

Towards Being Positively Negative about Dependent Types Jan de Muijnck-Hughes

References

[1I] Robert Atkey. ‘Data Types with Negation’. Extended Abstract (Talk Only) at Ninth
Workshop on Mathematically Structured Functional Programming, Munich, Germany, 2nd
April 2022. 2022. URL: https://youtu.be/mZZjOKWCF4A.

[2] Edwin C. Brady. ‘Idris 2: Quantitative Type Theory in Practice’. In: 35th European
Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus,
Denmark (Virtual Conference). 2021, 9:1-9:26. DOI: 10.4230/LIPIcs.ECOOP.2021.9.

[3] The Agda Development Team. Agda. 2023. URL: https://github.com/agda/agda.


https://youtu.be/mZZjOKWCF4A
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://github.com/agda/agda

