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Abstract

In this paper, we introduce a typed natural deduction system for propositional intu-
itionistic inquisitive logic. The term calculus we use to establish a Curry-Howard corre-
spondence is lambda calculus extended with a new construct corresponding to the logical
behaviour of the Split rule, a key rule of inquisitive logic. We show that the resulting
system is normalizing. The existence of this system corroborates previous observations
that questions have constructive content.

Extended abstract

Inquisitive logic [2] is a framework that accounts for both statements and questions within a
unified formal system. In recent years, research on inquisitive logic has grown significantly and
it has found its application in many other areas such as linguistics or philosophy of language [3].

Inquisitive logic is especially well-explored and understood from model-theoretic and alge-
braic points of view [12, 4]. Recently, there has been progress in the proof-theoretic under-
standing of the system [13, 7]. However, when it comes to a type-theoretic view, the picture
of inquisitive logic becomes less clear. To our knowledge, this area has not yet been properly
explored.

In this paper, we want to fill this gap and examine inquisitive logic from a type-theoretic
point of view. The canonical system of inquisitive logic is based on classical logic of statements.
However, in the type-theoretic context, it is natural to focus instead on intuitionistic inquisitive
logic (InqIL), which is an inquisitive logic of questions based on intuitionistic logic of statements
[5, 9, 10]. In particular, we introduce a Curry-Howard correspondence between a natural de-
duction system for propositional InqIL and a lambda calculus extended with a new construct
select that will capture the logical behaviour of the key rule of inquisitive logic called Split.

The fact that this can be achieved shows that there is a close link between the notions
of inquisitive/interrogative content and computational/constructive content. This was already
partly hinted at by the following Ciardelli’s observation:

proofs [of dependencies; i.e., proofs where both premises and conclusion are questions] have
an interesting kind of constructive content, reminiscent of the proofs-as-programs interpre-
tation of intuitionistic logic: a proof of a dependency encodes a method for computing
the dependency, i.e., for turning answers to the question premises into an answer to the
question conclusion. ([2], p. 3; see also [1], p. 324)

This also raises a further intriguing question: can these approaches be combined? For example,
while inquisitive semantics can model many kinds of questions, it is unsuitable for deductive or
computational ones (e.g., “What is 2 + 2?” or “What follows from φ?”) as its key semantic
notion of informational support is closed under logical consequence, and thus computational
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questions are trivially resolved by all information states. A type-theoretic approach, however,
has tools for tackling these issues.

In the basic version of intuitionistic inquisitive logic, inquisitive disjunction is the primary
question-forming operator and there is no primitive declarative disjunction. However, declara-
tive disjunction can be added to the system, either in the form of the so-called tensor disjunction,
as in [5, 10], or it can be defined as presupposition of the inquisitive disjunction, if we add to
the language the presupposition modality ◦, as in [11]. We will also discuss these extensions.

We obtain InqIL by extending intuitionistic propositional logic (IPL) by the following rule
known as Split:

α→ (φ ∨ ψ)
Split

(α→ φ) ∨ (α→ ψ)

where φ and ψ are arbitrary formulas corresponding to either questions or statements and α is a
declarative, that is, a disjunction-free formula corresponding to a statement. The rule intuitively
says that conditional questions are disjunctive questions resolved by suitable conditionals. In
particular, the possible answers to the conditional question whether q or r, if p are, in accordance
with Split, the conditionals if p then q and if p then r.

A key step in obtaining a Curry-Howard correspondence for InqIL rests on finding an ap-
propriate constructive function that would capture the behaviour of the key Split rule from a
computational point of view. To this end, we can utilize the results of [8] that introduced a
generalized version of this rule with such a function in the context of a propositional fragment
of Martin-Löf’s constructive type theory.

We show that we can carry over this function into InqIL and use it to derive the Split rule
and thus also provide its computational interpretation. The resulting lambda term capturing
its behaviour will be as follows:

f : α→ (φ ∨ ψ) [x : α]

ap(f, x) : φ ∨ ψ
[y : α→ φ]

injl(y) : (α→ φ) ∨ (α→ ψ)

[z : α→ ψ]

injr(z) : (α→ φ) ∨ (α→ ψ)

select(x.ap(f, x), y.injl(y), z.injr(z)) : (α→ φ) ∨ (α→ ψ)

The crucial new construct select is defined as follows:

[x : α]

c(x) : φ ∨ ψ
[y : α→ φ]

d(y) : χ

[z : α→ ψ]

e(z) : χ

select(x.c(x), y.d(y), z.e(z)) : χ

with the following computation rules, where t(x) : φ and s(x) : ψ:

select(x.injl(t(x)), y.d(y), z.e(z)) ⇒ d(λx.t(x))
select(x.injr(s(x)), y.d(y), z.e(z)) ⇒ e(λx.s(x))

Note that the new construct select is a variable-bining operator (the notation ‘x.c(x)’ means
that the variable x becomes bound in c(x) by select) and that it is treated as an eliminatory
noncanonical operator for disjunction (without appearances of the declarative formula α, the
rule reduces to the standard disjunction elimination rule). From a functional perspective, adding
select allows us to compute even open terms to canonical values, as long as the free variables
of those open terms range over declarative formulas α only.

Furthermore, we consider a variant of InqIL called InqIL◦ extended with a presupposition
modality ◦. This modality was introduced in [11] and defined via the following rules:

φ
◦I◦φ ◦φ

[φ]i

α ◦Eiα
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This modality is inspired by the truncation modality from homotopy type theory [6] that
turns types into mere propositions, that is, types that are inhabited by at most one term
(up to equivalence). The presupposition modality ◦ turns inquisitive formulas into declarative
ones. As mentioned above, it can be used to define declarative disjunction as ◦(φ ∨ ψ). And,
analogously to Split and select, we introduce new constructs for ◦I and ◦E called pre and sup
that will allow us to extend the Curry-Howard correspondence to InqIL◦ as well.

Having a typed natural deduction system for inquisitive logic makes it possible to utilize
Tait’s computability method for proving normalization [14]. Specifically, as the notion of reduc-
tion ⇒ that we will define via computation rules is a deterministic weak head reduction (that
is, there is at most one possible reduction for any given term), we show that both InqIL and
InqIL◦ are weakly normalizing. However, we suspect that if a more general notion of reduction
is adopted, the strong normalization property can be obtained as well.

Finally, establishing a Curry-Howard correspondence for inquisitive logic sheds further light
on the connection between the formulas-as-types principle innate to the Curry-Howard corre-
spondence and the questions-as-information types interpretation of inquisitive logic [1]. First,
our results confirm that formulas of inquisitive logic can indeed be regarded as types, as previ-
ously suggested by Ciardelli [1], p. 352 (see also [2], p. 110).

Second, the inherent distinction between information types and singleton types of inquis-
itive logic can be seen as paralleling the type-theoretic distinction between types and mere
propositions. From this perspective, both truncation of type theory and presupposition of in-
quisitive logic can be seen as operators for suppressing content: computational one in the case
of truncation and inquisitive one in the case of presupposition.
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